We propose a novel end-to-end semi-supervised adversarial framework to generate photorealistic face images of new identities with wide ranges of expressions, poses, and illuminations conditioned by a 3D morphable model. Previous adversarial style-transfer methods either supervise their networks with large volume of paired data or use unpaired data with a highly under-constrained two-way generative framework in an unsupervised fashion. We introduce pairwise adversarial supervision to constrain two-way domain adaptation by a small number of paired real and synthetic images for training along with the large volume of unpaired data. Extensive qualitative and quantitative experiments are performed to validate our idea. Generated face images of new identities contain pose, lighting and expression diversity and qualitative results show that they are highly constraint by the synthetic input image while adding photorealism and retaining identity information. We combine face images generated by the proposed method with the real data set to train face recognition algorithms. We evaluated the model on two challenging data sets: LFW and IJB-A. We observe that the generated images from our framework consistently improves over the performance of deep face recognition network trained with Oxford VGG Face dataset and achieves comparable results to the state-of-the-art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.