In this paper, a high efficiency on‐chip reconfigurable Doherty power amplifier (DPA) with proposed topology is proposed for LTE or 4G communication cells. The proposed DPA consists of input driver topology, hybrid coupler, asymmetric amplifiers, and 1:1 balun filtered network. The proposed input driver circuit provides wide amplified signal operation within range of 2.3GHz to 6GHz with flat gain of 33 dB. The amplified signal is unsteadily divided into two paths toward the carrier and the power amplifier by 900 hybrid couplers and demonstrates 27.6 dB and 28.3 dB of gain along with 83.2% and 84.5% of power added efficiency at average output power of 40 dBm. The high efficiency and almost flatness in gain stability of proposed DPA providing better solution in order to overcome the interference and the broadband issues for LTE communication cells. The balun‐filtered network is employed for combined the two outputs of carrier and peak amplifiers that provides more uniform desired band of operation in the frequency responses. The proposed DPA circuit are implemented and optimized by using advanced design RF simulator platform. The fabricated chip is made by using 0.13 μm GaN HEMT on Si‐Nitride monolithic microwave integrated circuit die process. The fabricated chip of DPA provides 85% of PAE with 28 dB gain which are made close agreement with simulation results. The size of chip is 2.8*1.2mm2 which occupies less die area as compared to existing DPAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.