Clinical trials of small interfering RNA (siRNA) targeting vascular endothelial growth factor-A (VEGFA) or its receptor VEGFR1 (also called FLT1), in patients with blinding choroidal neovascularization (CNV) from age-related macular degeneration, are premised on gene silencing by means of intracellular RNA interference (RNAi). We show instead that CNV inhibition is a siRNA-class effect: 21-nucleotide or longer siRNAs targeting non-mammalian genes, non-expressed genes, non-genomic sequences, pro-and anti-angiogenic genes, and RNAi-incompetent siRNAs all suppressed CNV in mice comparably to siRNAs targeting Vegfa or Vegfr1 without off-target RNAi or interferon-a/b activation. Non-targeted (against non-mammalian genes) and targeted (against Vegfa or Vegfr1) siRNA suppressed CNV via cell-surface toll-like receptor 3 (TLR3), its adaptor TRIF, and induction of interferon-c and interleukin-12. Non-targeted siRNA suppressed dermal neovascularization in mice as effectively as Vegfa siRNA. siRNA-induced inhibition of neovascularization required a minimum length of 21 nucleotides, a bridging necessity in a modelled 2:1 TLR3-RNA complex. Choroidal endothelial cells from people expressing the TLR3 coding variant 412FF were refractory to extracellular siRNA-induced cytotoxicity, facilitating individualized pharmacogenetic therapy. Multiple human endothelial cell types expressed surface TLR3, indicating that generic siRNAs might treat angiogenic disorders that affect 8% of the world's population, and that siRNAs might induce unanticipated vascular or immune effects.Therapeutic application of long, double-stranded (ds)RNAmediated RNAi and sequence-specific gene silencing through RNAi by short synthetic RNA duplexes is challenging because mammalian cells do not uptake 'naked' siRNA (whether chemically modified or not) without cell-permeating entities [1][2][3][4] . To minimize systemic exposure, initial clinical trials of siRNA were launched using intraocular injection in patients with CNV. CNV, wherein the retina is invaded by choroidal vessels beneath the retinal pigmented epithelium (RPE), is a late stage of age-related macular degeneration that afflicts 30-50 million people globally. The preclinical bases for trials of naked VEGFA siRNA (Bevasiranib) or VEGFR1 siRNA (AGN211745/ siRNA-027) were single reports in mice 5,6 that such siRNAs suppressed laser-injury-induced CNV, a model predictive of efficacy in humans 7,8 . These findings were interpreted as anomalous examples of local delivery surmounting the impediment to intracellular entry 9-11 . Instead, we show in two animal models that suppression of neovascularization is a generic property of siRNAs independent of sequence, target and internalization.Sequence-independent angiogenesis suppression by siRNA Numerous synthetic non-targeted 21-nucleotide duplex siRNAs from multiple vendors, when injected into the vitreous humour of wild-type mice, uniformly and dose-dependently suppressed CNV (Fig. 1a, b and Supplementary Fig. 1). siRNAs targeting jellyfish green fluorescent ...
Duane's retraction syndrome (DRS) is a complex congenital eye movement disorder caused by aberrant innervation of the extraocular muscles by axons of brainstem motor neurons. Studying families with a variant form of the disorder (DURS2-DRS), we have identified causative heterozygous missense mutations in CHN1 , a gene on chromosome 2q31 that encodes α2-chimaerin, a Rac guanosine triphosphatase–activating protein (RacGAP) signaling protein previously implicated in the pathfinding of corticospinal axons in mice. We found that these are gain-of-function mutations that increase α2-chimaerin RacGAP activity in vitro. Several of the mutations appeared to enhance α2-chimaerin translocation to the cell membrane or enhance its ability to self-associate. Expression of mutant α2-chimaerin constructs in chick embryos resulted in failure of oculomotor axons to innervate their target extraocular muscles. We conclude that α2-chimaerin has a critical developmental function in ocular motor axon pathfinding.
Retinal endothelial cells line the arborizing microvasculature that supplies and drains the neural retina. The anatomical and physiological characteristics of these endothelial cells are consistent with nutritional requirements and protection of a tissue critical to vision. On the one hand, the endothelium must ensure the supply of oxygen and other nutrients to the metabolically active retina, and allow access to circulating cells that maintain the vasculature or survey the retina for the presence of potential pathogens. On the other hand, the endothelium contributes to the blood-retinal barrier that protects the retina by excluding circulating molecular toxins, microorganisms, and pro-inflammatory leukocytes. Features required to fulfill these functions may also predispose to disease processes, such as retinal vascular leakage and neovascularization, and trafficking of microbes and inflammatory cells. Thus, the retinal endothelial cell is a key participant in retinal ischemic vasculopathies that include diabetic retinopathy and retinopathy of prematurity, and retinal inflammation or infection, as occurs in posterior uveitis. Using gene expression and proteomic profiling, it has been possible to explore the molecular phenotype of the human retinal endothelial cell and contribute to understanding of the pathogenesis of these diseases. In addition to providing support for the involvement of well-characterized endothelial molecules, profiling has the power to identify new players in retinal pathologies. Findings may have implications for the design of new biological therapies. Additional progress in this field is anticipated as other technologies, including epigenetic profiling methods, whole transcriptome shotgun sequencing, and metabolomics, are used to study the human retinal endothelial cell.
BackgroundRetinitis pigmentosa (RP) is characterized by progressive night blindness, visual field loss, altered vascular permeability and loss of central vision. Currently there is no effective treatment available except gene replacement therapy has shown promise in a few patients with specific gene defects. There is an urgent need to develop therapies that offer generic neuro-and vascular-protective effects with non-invasive intervention. Here we explored the potential of systemic administration of pluripotent bone marrow-derived mesenchymal stem cells (MSCs) to rescue vision and associated vascular pathology in the Royal College Surgeons (RCS) rat, a well-established animal model for RP.Methodology/Principal FindingsAnimals received syngeneic MSCs (1×106 cells) by tail vein at an age before major photoreceptor loss. Principal results: both rod and cone photoreceptors were preserved (5–6 cells thick) at the time when control animal has a single layer of photoreceptors remained; Visual function was significantly preserved compared with controls as determined by visual acuity and luminance threshold recording from the superior colliculus; The number of pathological vascular complexes (abnormal vessels associated with migrating pigment epithelium cells) and area of vascular leakage that would ordinarily develop were dramatically reduced; Semi-quantitative RT-PCR analysis indicated there was upregulation of growth factors and immunohistochemistry revealed that there was an increase in neurotrophic factors within eyes of animals that received MSCs.Conclusions/SignificanceThese results underscore the potential application of MSCs in treating retinal degeneration. The advantages of this non-invasive cell-based therapy are: cells are easily isolated and can be expanded in large quantity for autologous graft; hypoimmunogenic nature as allogeneic donors; less controversial in nature than other stem cells; can be readministered with minor discomfort. Therefore, MSCs may prove to be the ideal cell source for auto-cell therapy for retinal degeneration and other ocular vascular diseases.
Myotonic dystrophy (DM) is an autosomal dominant disorder characterized by skeletal muscle wasting, myotonia, cardiac arrhythmia, hyperinsulinaemia, mental retardation and ocular cataracts. The genetic defect in DM is a CTG repeat expansion located in the 3' untranslated region of DMPK and 5' of a homeodomain-encoding gene, SIX5 (formerly DMAHP; refs 2-5). There are three mechanisms by which CTG expansion can result in DM. First, repeat expansion may alter the processing or transport of the mutant DMPK mRNA and consequently reduce DMPK levels. Second, CTG expansion may establish a region of heterochromatin 3' of the repeat sequence and decrease SIX5 transcription. Third, toxic effects of the repeat expansion may be intrinsic to the repeated elements at the level of DNA or RNA (refs 10,11). Previous studies have demonstrated that a dose-dependent loss of Dm15 (the mouse DMPK homologue) in mice produces a partial DM phenotype characterized by decreased development of skeletal muscle force and cardiac conduction disorders. To test the role of Six5 loss in DM, we have analysed a strain of mice in which Six5 was deleted. Our results demonstrate that the rate and severity of cataract formation is inversely related to Six5 dosage and is temporally progressive. Six5+/- and Six5-/- mice show increased steady-state levels of the Na+/K+-ATPase alpha-1 subunit and decreased Dm15 mRNA levels. Thus, altered ion homeostasis within the lens may contribute to cataract formation. As ocular cataracts are a characteristic feature of DM, these results demonstrate that decreased SIX5 transcription is important in the aetiology of DM. Our data support the hypothesis that DM is a contiguous gene syndrome associated with the partial loss of both DMPK and SIX5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.