Background Dysregulation of the epitranscriptome causes abnormal expression of oncogenes in the tumorigenic process. Previous studies have shown that NAT10 can regulate mRNA translation efficiency through RNA acetylation. However, the role of NAT10‐mediated acetylation modification in bladder cancer remains elusive. Methods The clinical value of NAT10 was estimated according to NAT10 expression pattern based on TCGA data set and the tumor tissue array. Acetylated RNA immunoprecipitation sequencing was utilized to explore the role of NAT10 in mRNA ac4C modification. Translation efficiency and mRNA stability assay were applied to study the effect of NAT10‐deletion on target genes. The nude mouse model and genetically engineered mice were conducted to further verify the characteristics of NAT10 in promoting BLCA progression and regulating downstream targets. Results NAT10 was essential for the proliferation, migration, invasion, survival and the stem‐cell‐like properties of bladder cancer cell lines. NAT10 was responsible for mRNA ac4C modification in BLCA cells, including BCL9L, SOX4 and AKT1. Deficient NAT10 in both xenograft and transgenic mouse models of bladder cancer reduced the tumor burden. Furthermore, acetylated RNA immunoprecipitation sequencing data and RNA immunoprecipitation qPCR results revealed that NAT10 is responsible for a set of ac4C mRNA modifications in bladder cancer cells. Inhibition of NAT10 led to a loss of ac4C peaks in these transcripts and represses the mRNA's stability and protein expression. Mechanistically, the ac4C reduction modification in specific regions of mRNAs resulting from NAT10 downregulation impaired the translation efficiency of BCL9L, SOX4 and AKT1 as well as the stability of BCL9L, SOX4. Conclusions In summary, these findings provide new insights into the dynamic characteristics of mRNA's post‐transcriptional modification via NAT10‐dependent acetylation and predict a role for NAT10 as a therapeutic target in bladder cancer. Highlights NAT10 is highly expressed in BLCA patients and its abnormal level predicts bladder cancer progression and low overall survival rate. NAT10 is necessary and sufficient for BLCA tumourigenic properties. NAT10 is responsible for ac4C modification of target transcripts, including BCL9L, SOX4 and AKT1. NAT10 may serve as an effective and novel therapeutic target for BLCA.
The efficacy of DiLEP and PKERP were similar for relieving obstruction and low urinary tract symptoms. DiLEP provides less risk of hemorrhage, reduced bladder irrigation, and catheter times. The downward morcellation technique is more efficient than the resection technique. Future well designed randomized trials with extended follow-up and larger sample sizes may be needed to better verify the advantage of DiLEP in treating patients with symptomatic BPH.
Cluster of differentiation (CD)24 was originally described as a B lymphocyte marker and has recently received considerable attention in cancer research as its overexpression has been observed in several types of carcinoma. The CD24 molecule is a glycosyl-phosphatidylinositol-linked cell surface protein that appears to be associated with aggressive cancers involving invasion and metastasis. However, the expression of CD24 in human bladder cancer and its clinical significance remains largely unknown and no association has been reported between CD24 overexpression and human bladder tumor recurrence. In the present study, the CD24 expression in cancer tissues obtained during transurethral surgery and the subsequent intra-bladder tumor recurrence following surgery were assessed. Immunohistochemical staining was performed and the intensity of CD24 staining was semi-quantitatively evaluated. CD24 expression was observed more frequently in high-grade bladder tumors (G2–G3) than low-grade tumors (G1). Positive CD24 expression was significantly associated with intra-bladder tumor recurrence following surgery and increased staining intensity was also correlated with recurrence. The positive association between CD24 expression and tumor recurrence was observed in each tumor category (stages Ta and T1, low and high grade). The results demonstrated that CD24 expression is significantly associated with bladder tumor recurrence. To the best of our knowledge, this is the first study to reveal the significance of CD24 as a predictor of bladder cancer recurrence. These insights may lead to future therapeutic strategies targeting CD24 to prevent the dissemination of bladder cancer cells and tumor recurrence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.