Enhancers are important regulatory elements that can control gene activity across vast genetic distances. However, the underlying nature of this regulation remains obscured because it has been difficult to observe in living cells. Here, we visualize the spatial organization and transcriptional output of the key pluripotency regulator Sox2 and its essential enhancer Sox2 Control Region (SCR) in living embryonic stem cells (ESCs). We find that Sox2 and SCR show no evidence of enhanced spatial proximity and that spatial dynamics of this pair is limited over tens of minutes. Sox2 transcription occurs in short, intermittent bursts in ESCs and, intriguingly, we find this activity demonstrates no association with enhancer proximity, suggesting that direct enhancer-promoter contacts do not drive contemporaneous Sox2 transcription. Our study establishes a framework for interrogation of enhancer function in living cells and supports an unexpected mechanism for enhancer control of Sox2 expression that uncouples transcription from enhancer proximity.
Mutations in gene regulatory elements have been associated with a wide range of complex neuropsychiatric disorders. However, due to their cell-type specificity and difficulties in characterizing their regulatory targets, the ability to identify causal genetic variants has remained limited. To address these constraints, we perform integrative analysis of chromatin interactions using promoter capture Hi-C (pcHi-C), open chromatin regions using ATAC-seq, and transcriptomes using RNA-seq in four functionally distinct neural cell types: iPSC-induced excitatory neurons and lower motor neurons, iPSC-derived hippocampal dentate gyrus (DG)-like neurons, and primary astrocytes. We identify hundreds of thousands of long-range cis interactions between promoters and distal promoter-interacting regions (PIRs), enabling us to link regulatory elements to their target genes and reveal putative processes that are dysregulated in disease. Finally, we validate several PIRs using CRISPR techniques in human excitatory neurons, demonstrating that CDK5RAP3 , STRAP , and DRD2 are transcriptionally regulated by physically linked enhancers.
Lineage-specific epigenomic changes during human corticogenesis have remained elusive due to challenges with sample availability and tissue heterogeneity. For example, previous studies used single-cell RNA sequencing to identify at least nine major cell types and up to 26 distinct subtypes in the dorsal cortex alone 1 , 2 . Here, we characterize cell type-specific cis-regulatory chromatin interactions, open chromatin peaks, and transcriptomes for radial glia, intermediate progenitor cells, excitatory neurons, and interneurons isolated from mid-gestational human cortex samples. We show that chromatin interactions underlie multiple aspects of gene regulation, with transposable elements and disease-associated variants enriched at distal interacting regions in a cell type-specific manner. In addition, promoters with significantly increased levels of chromatin interactivity, termed super interactive promoters, are enriched for lineage-specific genes, suggesting that interactions at these loci contribute to the fine-tuning of transcription. Finally, we develop CRISPRview, a novel technique integrating immunostaining, CRISPRi, RNAscope, and image analysis for validating cell type-specific cis-regulatory elements in heterogeneous populations of primary cells. Our study presents the first cell type-specific characterization of 3D epigenomes in the developing human cortex, advancing our understanding of gene regulation and lineage specification during this critical developmental window.
A small population of cells with stem cell‐like properties in prostate cancer (PCa), called prostate cancer stem cells (PrCSCs) or prostate stemness‐high cancer cells, displays highly tumorigenic and metastatic features and may be responsible for the therapy resistance. A small molecule, napabucasin (BBI608), recently have been identified with suppression of stemness‐high cancer cells in a variety of cancers. However, the effects of napabucasin on PCa cells as well as PrCSCs isolated from PCa cells have not yet been defined. The effect of napabucasin on PCa cells in cell proliferation, colony formation, and cell migration in vitro were measured by MTS, colony formation assay, and Transwell, respectively. Flow cytometry was employed to evaluate cell cycle and cell apoptosis, and the effect on tumorigenesis in vivo was examined by tumor growth assays. Furthermore, the role of napabucasin on self‐renewal and survival of PrCSCs was evaluated by their ability to grow spheres and cell viability assay, respectively. Western Blot and qRT‐PCR were used to determine the effect of napabucasin on the expressions of stemness markers. Decrease in cell viability, colony formation, migration, and survival with cell cycle arrest, higher sensitivity to docetaxel in vitro, and repressed tumorigenesis in vivo was observed upon napabucasin treatment. More importantly, napabucasin can obviously inhibit spherogenesis and even kill PrCSCs in vitro. Downregulation of stemness markers was observed after PrCSCs were treated with napabucasin. This study demonstrates that napabucasin may be a novel approach in the treatment of advanced PCa, specifically for castration‐resistant prostate cancer (CRPC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.