Enhancers are important regulatory elements that can control gene activity across vast genetic distances. However, the underlying nature of this regulation remains obscured because it has been difficult to observe in living cells. Here, we visualize the spatial organization and transcriptional output of the key pluripotency regulator Sox2 and its essential enhancer Sox2 Control Region (SCR) in living embryonic stem cells (ESCs). We find that Sox2 and SCR show no evidence of enhanced spatial proximity and that spatial dynamics of this pair is limited over tens of minutes. Sox2 transcription occurs in short, intermittent bursts in ESCs and, intriguingly, we find this activity demonstrates no association with enhancer proximity, suggesting that direct enhancer-promoter contacts do not drive contemporaneous Sox2 transcription. Our study establishes a framework for interrogation of enhancer function in living cells and supports an unexpected mechanism for enhancer control of Sox2 expression that uncouples transcription from enhancer proximity.
Mutations in gene regulatory elements have been associated with a wide range of complex neuropsychiatric disorders. However, due to their cell-type specificity and difficulties in characterizing their regulatory targets, the ability to identify causal genetic variants has remained limited. To address these constraints, we perform integrative analysis of chromatin interactions using promoter capture Hi-C (pcHi-C), open chromatin regions using ATAC-seq, and transcriptomes using RNA-seq in four functionally distinct neural cell types: iPSC-induced excitatory neurons and lower motor neurons, iPSC-derived hippocampal dentate gyrus (DG)-like neurons, and primary astrocytes. We identify hundreds of thousands of long-range cis interactions between promoters and distal promoter-interacting regions (PIRs), enabling us to link regulatory elements to their target genes and reveal putative processes that are dysregulated in disease. Finally, we validate several PIRs using CRISPR techniques in human excitatory neurons, demonstrating that CDK5RAP3 , STRAP , and DRD2 are transcriptionally regulated by physically linked enhancers.
Lineage-specific epigenomic changes during human corticogenesis have remained elusive due to challenges with sample availability and tissue heterogeneity. For example, previous studies used single-cell RNA sequencing to identify at least nine major cell types and up to 26 distinct subtypes in the dorsal cortex alone 1 , 2 . Here, we characterize cell type-specific cis-regulatory chromatin interactions, open chromatin peaks, and transcriptomes for radial glia, intermediate progenitor cells, excitatory neurons, and interneurons isolated from mid-gestational human cortex samples. We show that chromatin interactions underlie multiple aspects of gene regulation, with transposable elements and disease-associated variants enriched at distal interacting regions in a cell type-specific manner. In addition, promoters with significantly increased levels of chromatin interactivity, termed super interactive promoters, are enriched for lineage-specific genes, suggesting that interactions at these loci contribute to the fine-tuning of transcription. Finally, we develop CRISPRview, a novel technique integrating immunostaining, CRISPRi, RNAscope, and image analysis for validating cell type-specific cis-regulatory elements in heterogeneous populations of primary cells. Our study presents the first cell type-specific characterization of 3D epigenomes in the developing human cortex, advancing our understanding of gene regulation and lineage specification during this critical developmental window.
The gene balance hypothesis postulates that there is selection on gene copy number (gene dosage) to preserve the stoichiometric balance among interacting proteins. This presupposes that gene product abundance is governed by gene dosage and that gene dosage responses are consistent for interacting genes in a dosage-balance-sensitive network or complex. Gene dosage responses, however, have rarely been quantified, and the available data suggest that they are highly variable. We sequenced the transcriptomes of two synthetic autopolyploid accessions of Arabidopsis (Arabidopsis thaliana) and their diploid progenitors, as well as one natural tetraploid and its synthetic diploid produced via haploid induction, to estimate transcriptome size and dosage responses immediately following ploidy change. Similar to what has been observed in previous studies, overall transcriptome size does not exhibit a simple doubling in response to genome doubling, and individual gene dosage responses are highly variable in all three accessions, indicating that expression is not strictly coupled with gene dosage. Nonetheless, putatively dosage balance-sensitive gene groups (Gene Ontology terms, metabolic networks, gene families, and predicted interacting proteins) exhibit smaller and more coordinated dosage responses than do putatively dosage-insensitive gene groups, suggesting that constraints on dosage balance operate immediately following whole-genome duplication and that duplicate gene retention patterns are shaped by selection to preserve dosage balance.
Knowing the rate at which transposable elements (TEs) insert and delete is critical for understanding their role in genome evolution. We estimated spontaneous rates of insertion and deletion for all known, active TE superfamilies present in a set of Drosophila melanogaster mutation-accumulation (MA) lines using whole genome sequence data. Our results demonstrate that TE insertions far outpace TE deletions in D. melanogaster. We found a significant effect of background genotype on TE activity, with higher rates of insertions in one MA line. We also found significant rate heterogeneity between the chromosomes, with both insertion and deletion rates elevated on the X relative to the autosomes. Further, we identified significant associations between TE activity and chromatin state, and tested for associations between TE activity and other features of the local genomic environment such as TE content, exon content, GC content, and recombination rate. Our results provide the most detailed assessment of TE mobility in any organism to date, and provide a useful benchmark for both addressing theoretical predictions of TE dynamics and for exploring large-scale patterns of TE movement in D. melanogaster and other species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.