The explosion in population genomic data demands ever more complex modes of analysis, and increasingly these analyses depend on sophisticated simulations. Re-cent advances in population genetic simulation have made it possible to simulate large and complex models, but specifying such models for a particular simulation engine remains a difficult and error-prone task. Computational genetics researchers currently re-implement simulation models independently, leading to inconsistency and duplication of effort. This situation presents a major barrier to empirical researchers seeking to use simulations for power analyses of upcoming studies or sanity checks on existing genomic data. Population genetics, as a field, also lacks standard benchmarks by which new tools for inference might be measured. Here we describe a new resource, stdpopsim, that attempts to rectify this situation. Stdpopsim is a community-driven open source project, which provides easy access to a growing catalog of published simulation models from a range of organisms and supports multiple simulation engine backends. This resource is available as a well-documented python library with a simple command-line interface. We share some examples demonstrating how stdpopsim can be used to systematically compare demographic inference methods, and we encourage a broader community of developers to contribute to this growing resource.
Adaptation to spatially varying environments has been studied for decades, but advances in sequencing technology are now enabling researchers to investigate the landscape of genetic variation underlying this adaptation genome wide. In this review, we highlight some of the decades-long research on local adaptation in Drosophila melanogaster from well-studied clines in North America and Australia. We explore the evidence for parallel adaptation and identify commonalities in the genes responding to clinal selection across continents as well as discuss instances where patterns differ among clines. We also investigate recent studies utilizing whole-genome data to identify clines in D. melanogaster and a number of other systems. Although connecting segregating genomic variation to variation in phenotypes and fitness remains challenging, clinal genomics is poised to increase our understanding of local adaptation and the selective pressures that drive the extensive phenotypic diversity observed in nature.
Accurately inferring the genome-wide landscape of recombination rates in natural populations is a central aim in genomics, as patterns of linkage influence everything from genetic mapping to understanding evolutionary history. Here, we describe recombination landscape estimation using recurrent neural networks (ReLERNN), a deep learning method for estimating a genome-wide recombination map that is accurate even with small numbers of pooled or individually sequenced genomes. Rather than use summaries of linkage disequilibrium as its input, ReLERNN takes columns from a genotype alignment, which are then modeled as a sequence across the genome using a recurrent neural network. We demonstrate that ReLERNN improves accuracy and reduces bias relative to existing methods and maintains high accuracy in the face of demographic model misspecification, missing genotype calls, and genome inaccessibility. We apply ReLERNN to natural populations of African Drosophila melanogaster and show that genome-wide recombination landscapes, although largely correlated among populations, exhibit important population-specific differences. Lastly, we connect the inferred patterns of recombination with the frequencies of major inversions segregating in natural Drosophila populations.
Severe insect declines make headlines, but they are rarely based on systematic monitoring outside of Europe. We estimate the rate of change in total butterfly abundance and the population trends for 81 species using 21 years of systematic monitoring in Ohio, USA. Total abundance is declining at 2% per year, resulting in a cumulative 33% reduction in butterfly abundance. Three times as many species have negative population trends compared to positive trends. The rate of total decline and the proportion of species in decline mirror those documented in three comparable long-term European monitoring programs. Multiple environmental changes such as climate change, habitat degradation, and agricultural practices may contribute to these declines in Ohio and shift the makeup of the butterfly community by benefiting some species over others. Our analysis of life-history traits associated with population trends shows an impact of climate change, as species with northern distributions and fewer annual generations declined more rapidly. However, even common and invasive species associated with human-dominated landscapes are declining, suggesting widespread environmental causes for these trends. Declines in common species, although they may not be close to extinction, will have an outsized impact on the ecosystem services provided by insects. These results from the most extensive, systematic insect monitoring program in North America demonstrate an ongoing defaunation in butterflies that on an annual scale might be imperceptible, but cumulatively has reduced butterfly numbers by a third over 20 years.
Service Email Alerting click here. top right corner of the article or Receive free email alerts when new articles cite this article-sign up in the box at the object identifier (DOIs) and date of initial publication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.