The domestic cat (Felis catus) shows remarkable sensitivity to
the adverse effects of phenolic drugs, including acetaminophen and aspirin, as
well as structurally-related toxicants found in the diet and environment. This
idiosyncrasy results from pseudogenization of the gene encoding
UDP-glucuronosyltransferase (UGT) 1A6, the major species-conserved phenol
detoxification enzyme. Here, we established the phylogenetic timing of
disruptive UGT1A6 mutations and explored the hypothesis that
gene inactivation in cats was enabled by minimal exposure to plant-derived
toxicants. Fixation of the UGT1A6 pseudogene was estimated to
have occurred between 35 and 11 million years ago with all extant Felidae having
dysfunctional UGT1A6. Out of 22 additional taxa sampled,
representative of most Carnivora families, only brown hyena (Parahyaena
brunnea) and northern elephant seal (Mirounga
angustirostris) showed inactivating UGT1A6
mutations. A comprehensive literature review of the natural diet of the sampled
taxa indicated that all species with defective UGT1A6 were
hypercarnivores (>70% dietary animal matter). Furthermore those
species with UGT1A6 defects showed evidence for reduced amino
acid constraint (increased dN/dS ratios approaching the neutral
selection value of 1.0) as compared with species with intact
UGT1A6. In contrast, there was no evidence for reduced
amino acid constraint for these same species within UGT1A1, the
gene encoding the enzyme responsible for detoxification of endogenously
generated bilirubin. Our results provide the first evidence suggesting that diet
may have played a permissive role in the devolution of a mammalian drug
metabolizing enzyme. Further work is needed to establish whether these
preliminary findings can be generalized to all Carnivora.
Soybean is a common source of protein in many pet foods. Slow glucuronidation of soy-derived isoflavones in cats has been hypothesized to result in accumulation with adverse health consequences. Here we evaluated species’ differences in soy isoflavone glucuronidation using urine samples from cats and dogs fed a soy-based diet and liver microsomes from cats compared with microsomes from 12 other species.Significant concentrations of conjugated (but not unconjugated) genistein, daidzein, and glycitein, and the gut microbiome metabolites, dihydrogenistein and dihydrodaidzein were found in cat and dog urine samples. Substantial amounts of conjugated equol were also found in cat urine but not in dog urine.β-glucuronidase treatment showed that all these compounds were significantly glucuronidated in dog urine while only daidzein (11%) and glycitein (37%) showed any glucuronidation in cat urine suggesting that alternate metabolic pathways including sulfation predominate in cats.Glucuronidation rates of genistein, daidzein, and equol by cat livers were consistently ranked within the lowest three out of 13 species’ livers evaluated. Ferret and mongoose livers were also ranked in the lowest four species.Our results demonstrate that glucuronidation is a minor pathway for soy isoflavone metabolism in cats compared with most other species.
Background-Phytoestrogens are non-steroidal compounds possessing estrogenic activity present in significant amounts in soy-based pet foods. There is speculation that long-term consumption of phytoestrogen-rich diets could have biological effects but this has never been evaluated in dogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.