Rock mechanics parameters control the distribution of in situ stress and natural fractures, which is the key to sweet spot evaluation in reservoir engineering. Combined with the distribution of in situ stress, an experimental scheme of stress on rock physical parameters was designed. The results show that rock sonic velocity is extremely sensitive to water saturation under overburden pressure. At ultrasonic frequencies, when the water saturation increases from 0% to 80%, the P-wave velocity increases first and then decreases. When the water saturation continues to increase to 100%, the P-wave velocity increases. This is due to the effect of water saturation on the shear modulus. Saturation is negatively correlated with shear wave velocity and resistivity. Different minerals have different control effects on the rock P-S wave velocity ratio. Quartz content plays a dominant role, and the two are negatively correlated, followed by feldspar and clay, and the two are positively correlated with the P-S wave ratio. The confining pressure, axial compression, stress ratio and burial depth are positively correlated with the P-S wave and negatively correlated with the P-S wave ratio; in descending order, the influencing factors of stress on the petrophysical parameters are maximum stress ratio > confining pressure > axial pressure.
With the development of shale gas exploration in China, the use of conventional logging tools has been introduced, and cross multipole array acoustic logging tools have gradually been used to determine the stress orientation in shale. The direction of fast shear waves (FSWs) is generally parallel to the horizontal maximum principal compression stress (SHmax). However, the azimuth of FSWs is found to be parallel to the main strike (but not to the SHmax) direction of structural fractures in shale reservoirs. Outcrop and image logging data indicate that the natural fractures in this area strike NE‒SW. If the shear wave anisotropy is caused by only the stress around the borehole and the FSWs are known to be NE‒SW, SHmax should be parallel to NE‒SW; however, according to statistics of land movement in adjacent areas, anelastic strain recovery, earthquake focal mechanism, borehole breakouts, hydraulic fracturing data, deviated well data, and drilling‐induced fracture data in local regions, SHmax is oriented in the NW‒SE direction, and the directions of FSWs are generally parallel to the structural fracture direction. This contradiction indicates that the development of structural fractures may affect the orientation of FSWs. Therefore, it is not reliable to use XMAC (Cross‐Multipole Array Acoustilog) logging only to determine the direction of in situ stress in fractured shale reservoirs. In addition, the direction of the FSWs in the middle of thick mudstones is NW‒SE, which may represent accurate information about the in situ stress direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.