BackgroundPu-erh tea is a traditional Chinese tea and produced by natural solid-state fermentation. Several studies show that the natural microbiota influence caffeine level in pu-erh tea. Our previous research also found that the caffeine declined significantly (p < 0.05) in the fermentation, which suggested that the caffeine level could be influenced by specific strains. The purpose of this study was to isolate and identify microorganisms for caffeine degradation, and this research explored the degradation products from caffeine and optimal condition for caffeine degradation.Results11 Fungi were isolated from pu-erh tea fermentation and 7 strains could survive in caffeine solid medium. Two superior strains were identified as Aspergillus niger NCBT110A and Aspergillus sydowii NRRL250 by molecular identification. In the substrate tests with caffeine, A. niger NCBT110A could use caffeine as a potential carbon source while glucose is absent, A. sydowii NRRL250 could degrade 600 mg/L caffeine completely in a liquid medium. During the degradation product analysis of A. sydowii NRRL250, theophylline and 3-methlxanthine were detected, and the level of theophylline and 3-methlxanthine increased significantly (p < 0.05) with the degradation of caffeine. The single factor analysis showed that the optimum conditions of caffeine degradation were 1) substrate concentration of 1200 mg/L, 2) reaction temperature at 30 °C, and 3) pH of 6. In the submerged fermentation of tea infusion by A. sydowii NRRL250, 985.1 mg/L of caffeine was degraded, and 501.2 mg/L of theophylline was produced.ConclusionsResults from this research indicate that Aspergillus sydowii NRRL250 was an effective strain to degrade caffeine. And theophylline and 3-methlxanthine were the main caffeine degradation products.Electronic supplementary materialThe online version of this article (10.1186/s12866-018-1194-8) contains supplementary material, which is available to authorized users.
BackgroundCaffeine is one of the most abundant methylxanthines in tea, and it remains stable in processing of general teas. In the secondary metabolism of microorganism, theophylline is the main conversion product in caffeine catabolism through demethylation. Microorganisms, involved in the solid-state fermentation of pu-erh tea, have a certain impact on caffeine level. Inoculating an appropriate starter strain that is able to convert caffeine to theophylline would be an alternative way to obtain theophylline in tea. The purpose of this study was to isolate and identify the effective strain converting caffeine to theophylline in pu-erh tea, and discuss the optimal conditions for theophylline production.ResultsCaffeine content was decreased significantly (p < 0.05) and theophylline content was increased significantly (p < 0.05) during the aerobic fermentation of pu-erh tea. Five dominant fungi were isolated from the aerobic fermentation and identified as Aspergillus niger, Aspergillus sydowii, Aspergillus pallidofulvus, Aspergillus sesamicola and Penicillium mangini, respectively. Especially, A. pallidofulvus, A. sesamicola and P. mangini were detected in pu-erh tea for the first time. All isolates except A. sydowii TET-2, enhanced caffeine content and had no significant influence on theophylline content. In the aerobic fermentation of A. sydowii TET-2, 28.8 mg/g of caffeine was degraded, 93.18% of degraded caffeine was converted to theophylline, and 24.60 mg/g of theophylline was produced. A. sydowii PET-2 could convert caffeine to theophylline significantly, and had application potential in the production of theophylline. The optimum conditions of theophylline production in the aerobic fermentation were 1) initial moisture content of 35% (w/w), 2) inoculation quantity of 8%, and 3) incubation temperature at 35 °C.ConclusionsFor the first time, we find that A. sydowii PET-2 could convert caffeine to theophylline, and has the potential value in theophylline production through aerobic fermentation.
Natural microorganisms involved in solid-state fermentation (SSF) of Pu-erh tea have a significant impact on its chemical components. Aspergillus sydowii is a fungus with a high caffeine-degrading capacity. In this work, A. sydowii was inoculated into sun-dried green tea leaves for SSF. Metabolomic analysis was carried out by using UPLC-QTOF-MS method, and caffeine and related demethylated products were determined by HPLC. The results showed that A. sydowii had a significant (P < 0.05) impact on amino acids, carbohydrates, flavonoids, and caffeine metabolism. Moreover, A. sydowii could promote the production of ketoprofen, baclofen, and tolbutamide. Along with caffeine degradation, theophylline, 3methylxanthine, 1,7-dimethylxanthine, 1-methylxanthine, and 7-methylxanthine were increased significantly (P < 0.05) during inoculated fermentation, which showed that demethylation was the main pathway of caffeine degradation in A. sydowii secondary metabolism. The absolute quantification analysis showed that caffeine could be demethylated and converted to theophylline and 3-methylxanthine. Particularly, about 93.24% of degraded caffeine was converted to theophylline, 27.92 mg/g of theophylline was produced after fermentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.