Green fluorescent protein (hGFP-S65T) was expressed in transgenic mice under the control of the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter. Tissues from two independent transgenic lines were characterized by Northern blot analysis and by confocal microscopy. The expression pattern in these two lines was identical in all tissues examined, and similar to that found previously with a lacZ transgene driven by the same promoter. Bright fluorescence was observed in the cell bodies and processes of unfixed or fixed astrocytes, using both whole mount and brain slice preparations, from multiple areas of the central nervous system. However, in contrast to GFAP-lacZ transgenics, retinal Müller cells expressed the GFP transgene in response to degeneration of neighboring photoreceptors. These data indicate that the 2.2-kb hGFAP promoter contains sufficient regulatory elements to direct expression in Müller cells, and that GFP is a suitable reporter gene for use in living preparations of the mammalian nervous system. Such mice should prove useful for studies of dynamic changes in astrocyte morphology during development, and in response to physiological and pathological conditions.
Axons of neonatal rat optic nerves exhibit fast calcium transients in response to brief action potential stimulation. In response to one to four closely spaced action potentials, evoked calcium transients showed a fast-rising phase followed by a decay with a time constant of approximately 2-3 sec. By selective staining of axons or glial cells with calcium dyes, it was shown that the evoked calcium transient originated from axons. The calcium transient was caused by influx because it was eliminated when bath calcium was removed. Pharmacological profile studies with calcium channel subtype-specific peptides suggested that 58% of the evoked calcium influx was accounted for by N-type calcium channels, whereas L- and P/Q-type calcium channels had little, if any, contribution. The identity of the residual calcium influx remains unclear. GABA application caused a dramatic reduction of the amplitude of the action potential and the associated calcium influx. When GABAA receptors were blocked by bicuculline, the inhibitory effect of GABA on the action potential was eliminated, whereas that on the calcium influx was not, indicating involvement of GABAB receptors. Indeed, the calcium influx was inhibited by the GABAB receptor agonist baclofen. This baclofen effect was occluded by a previous block of N-type calcium channels and was unaffected by the broad-spectrum K+ channel blocker 4-AP. We conclude that neonatal rat optic nerve axons express N-type calcium channels, which are subjected to regulation by G-protein-coupled GABAB receptors. We suggest that receptor-mediated inhibition of axonal calcium channels plays a protective role in neonatal anoxic and/or ischemic injury.
Vitellogenin (vtg) was isolated from greenback flounder (Rhombosolea tapirina), rainbow trout, (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) plasma. The molecular weight of each native molecule, as determined by gel filtration, was 540, 383 and 557 kD respectively. With SDS-PAGE under reducing conditions, rainbow trout vtg dissociated into 1 major subunit (~154 kD), and Atlantic salmon and greenback flounder vtg dissociated into 3 major subunits (~ 159, 117, 86 kD and 155, 104, 79 kD respectively). Polyclonal antisera, produced against only the highest molecular weight subunit from each species following excision of these bands from reducing gels, were reactive with all subunits in Western blots.These antisera were found to be highly species-specific as determined by competition ELISA.No cross-reactivity was noted, even between the two salmonid species. These data suggest that excision of bands from gels is a simple procedure for the preparation of highly specific antisera, and that cross-species assays employing heterologous antisera are unlikely to be possible.
This study was designed to compare the effectiveness of daily short-duration -G x gravity exposure in preventing adverse changes in skeletal and cardiac muscles and bone due to simulated microgravity. Tail suspension for 28 days was used to simulate microgravity-induced deconditioning effects. Daily standing (STD) at 1 G for 1, 2, or 4 h/day or centrifugation (CEN) at 1.5 or 2.6 G for 1 h/day was used to provide -Gx gravitation as a countermeasure. The results indicate that the minimum gravity exposure requirements vary greatly in different systems. Cardiac muscle is most responsive to such treatment: 1 h/day of -G x gravitation by STD was sufficient to prevent adverse changes in myocardial contractility; bone is most resistant: 4 h/day of -G x gravitation only partially alleviated the adverse changes in physical and mechanical properties of the femur. The responsiveness of skeletal muscle is moderate: 4 h/day of -G x gravitation prevented mass reduction and histomorphometric changes in the soleus muscle during a 28-day simulation period. Increasing gravitational intensity to 2.6 G showed less benefit or no additional benefit in preventing adverse changes in muscle and bone. The present work suggests that system specificity in responsiveness to intermittent gravity exposure should be considered one of the prerequisites in proposing intermittent artificial gravity as a potential countermeasure.
This study was designed to clarify whether simulated microgravity-induced differential adaptational changes in cerebral and hindlimb arteries could be prevented by daily short-period restoration of the normal distribution of transmural pressure across arterial vasculature by either dorsoventral or footward gravitational loading. Tail suspension (Sus) for 28 days was used to simulate cardiovascular deconditioning due to microgravity. Daily standing (STD) for 1, 2, or 4 h, or +45 degrees head-up tilt (HUT) for 2 or 4 h was used to provide short-period dorsoventral or footward gravitational loading as countermeasure. Functional studies showed that Sus alone induced an enhancement and depression in vasoconstrictor responsiveness of basilar and femoral arterial rings, respectively, as previously reported. These differential functional alterations can be prevented by either of the two kinds of daily gravitational loading treatments. Surprisingly, daily STD for as short as 1 h was sufficient to prevent the differential functional changes that might occur due to Sus alone. In morphological studies, the effectiveness of daily 4-h HUT or 1-h STD in preventing the differential remodeling changes in the structure of basilar and anterior tibial arteries induced by Sus alone was examined by histomorphometry. The results showed that both the hypertrophic and atrophic changes that might occur, respectively, in cerebral and hindlimb arteries due to Sus alone were prevented not only by daily HUT for 4 h but also by daily STD even for 1 h. These data indicate that daily gravitational loading by STD for as short as 1 h is sufficient to prevent differential adaptational changes in function and structure of vessels in different anatomic regions induced by a medium-term simulated microgravity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.