The nutrient removal and biomass production of the internal circulating fluidized bed microalgae membrane bioreactor (ICFB-MMBR) was studied under different cultivation modes, influent TOC, influent pH, and influent N/P. Platymonas helgolandica tsingtaoensis was used as the biological source. The growth of P. helgolandica tsingtaoensis and the removal efficiency of pollutants in the mixotrophy culture mode were improved compared with other culture modes. With the increased influent TOC, the average growth rate of P. helgolandica tsingtaoensis increased, and ammonia nitrogen and total phosphorus removal rate were improved. The P. helgolandica tsingtaoensis growth rate and nutrient removal efficiencies at the influent pH of 8 were the best among the different influent pH values. As the influent N/P ratio increased from 5 to 20, the P. helgolandica tsingtaoensis growth rate and pollutant removal rate increased gradually. When the influent N/P ratio was higher than 20, the P. helgolandica tsingtaoensis growth rate and pollutant removal rate tended to be stable and did not significantly change with the increase of influent N/P ratio. At the proper influent conditions, the high P. helgolandica tsingtaoensis biomass and nutrient removal efficiency could be obtained in the microalgae membrane bioreactor, which could provide a theoretical basis for the application of the system for wastewater treatment.
The mariculture wastewater treatment performance for the combined system of anoxic filter and membrane bioreactor (AF-MBR) was investigated under different hydraulic retention times (HRTs), influent alkalinity, and influent ammonia nitrogen load. The results showed that the removal efficiencies of TOC and total nitrogen were slightly better at the HRT of 8 h than at other HRTs, and the phosphate removal efficiency decreased with the increase of HRT. With the increase of influent alkalinity, the removal of TOC and phosphate did not change significantly. With the increase of influent alkalinity from 300 mg/L to 500 mg/L, the total nitrogen removal efficiency of AF-MBR was improved, but the change of the removal efficiency was not obvious when the alkalinity increased from 500 mg/L to 600 mg/L. When the influent concentration of ammonia nitrogen varied from 20 mg/L to 50 mg/L, the removal efficiencies of TOC, phosphate, and total nitrogen by AF-MBR were stable. An interesting finding was that in all the different operation conditions examined, the treatment efficiency of AF-MBR was always better than that of the control MBR. The concentrations of NO3−-N in AF-MBR were relatively low, whereas NO3−-N accumulated in the control MBR. The reason was that the microorganisms attached to the carrier and remained fixed in the aerobic and anoxic spaces, so that there was a gradual enrichment of bacteria characterized by slow growth in a high-salt environment. In addition, the microorganisms could gather and grow on the carrier forming a biofilm with higher activity, a richer and more stable population, and enhanced ability to resist a load impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.