The care available for SCD in Nigeria is still suboptimal and there is an urgent need for concerted effort to tackle the problem, but to make a significant impact on the burden of the disease would require more focus at the primary care level. Some steps to achieving this are outlined.
Key Points
Hepcidin rises more dramatically in mild malaria than in severe malaria. Hepcidin levels are linked to inflammation, not anemia, in severe malarial anemia and cerebral malaria.
Background
Sickle cell disease (SCD) is a neglected burden of growing importance. >312,000 births are affected annually by sickle cell anaemia (SCA). Early interventions such as newborn screening, penicillin prophylaxis and hydroxyurea can substantially reduce the mortality and morbidity associated with SCD. Nevertheless, their implementation in African countries has been mostly limited to pilot projects. Recent development of low-cost point-of-care testing (POCT) devices for sickle haemoglobin (HbS) could greatly facilitate the diagnosis of those affected.
Methods
We conducted the first multi-centre, real-world assessment of a low-cost POCT device, HemoTypeSC, in a low-income country. Between September and November 2017, we screened 1121 babies using both HemoTypeSC and HPLC and confirmed discordant samples by molecular diagnosis.
Findings
We found that, in optimal field conditions, the sensitivity and specificity of the test for SCA were 93.4% and 99.9%, respectively. All 14 carriers of haemoglobin C were successfully identified. Our study reveals an overall accuracy of 99.1%, but also highlights the importance of rigorous data collection, staff training and accurate confirmatory testing. It suggests that HPLC results might not be as reliable in a resource-poor setting as usually considered.
Interpretation
The use of such a POCT device can be scaled up and routinely used across multiple healthcare centres in sub-Saharan Africa, which would offer great potential for the identification and management of vast numbers of individuals affected by SCD who are currently undiagnosed.
Funding US
Imperial College London's Wellcome Trust Centre for Global Health Research (grant #WMNP P43370).
Systemic inflammation and sequestration of parasitized erythrocytes are central processes in the pathophysiology of severe Plasmodium falciparum childhood malaria. However, it is still not understood why some children are more at risks to develop malaria complications than others. To identify human proteins in plasma related to childhood malaria syndromes, multiplex antibody suspension bead arrays were employed. Out of the 1,015 proteins analyzed in plasma from more than 700 children, 41 differed between malaria infected children and community controls, whereas 13 discriminated uncomplicated malaria from severe malaria syndromes. Markers of oxidative stress were found related to severe malaria anemia while markers of endothelial activation, platelet adhesion and muscular damage were identified in relation to children with cerebral malaria. These findings suggest the presence of generalized vascular inflammation, vascular wall modulations, activation of endothelium and unbalanced glucose metabolism in severe malaria. The increased levels of specific muscle proteins in plasma implicate potential muscle damage and microvasculature lesions during the course of cerebral malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.