This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Highlights • We propose a parallel policy for autonomous tier-captive storage/retrieval systems. • A fork-join queueing network is formulated to analyze the system performance. • The parallel policy has advantages in small size systems. • The parallel policy has advantages below a critical transaction arrival rate.
Robotic compact storage and retrieval systems (RCSRS) have seen many implementations over the last few years. In such a system, the inventory items are stored in bins, organized in a grid. In each cell of the grid, a certain number of bins are stored on top of each other. Robots with transport and lifting capabilities move on the grid roof to transport bins between manual workstations and storage stacks. We estimate performance and evaluate storage policies of RCSRS, considering both dedicated and shared storage policies coupled with random and zoned storage stacks. Semi-open queuing networks (SOQNs) are built to estimate the system performance, which can handle both immediate and delayed reshuffling processes. We approximate the models by reduced SOQNs with two load-dependent service nodes and use the matrix-geometric method to solve them. Both simulations and a real case are used to validate the analytical models. Assuming a given number of stored products, our models can be used to optimize not only the length-to-width ratio of the system but also the stack height, depending on the storage strategy used. For a given inventory and optimal system configuration, we demonstrate that the dedicated storage policy outperforms the shared storage policy when the objective is to minimize dual command throughput time. However, from a cost perspective, with a maximum dual command throughput time as a constraint, we show that shared storage substantially outperforms dedicated storage. The annualized costs of dedicated storage are up to twice as large as those of shared storage, as a result of the larger number of storage positions required by dedicated storage and the relatively lower filling degree of storage stacks. The online appendix is available at https://doi.org/10.1287/trsc.2017.0786 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.