Text classification is technique for assigning the class or label to a particular document within predefined class labels. Predefined classes examples are sports, business, technical, education and science etc. Classification is supervised learning technique i.e. these classes are trained with certain features and then document is classified based on similarity measure with these trained document set. Text classification is used in many applications like assigning the label to the documents, separating the spam messages from the genuine one, filtering of text, natural language processing etc. Feature selection, extraction and classification are various phases for assigning label to any document. In this paper, PCA is used for feature extraction, ABC is used for feature selection and SVM is used for classification. PCA is improved by applying normalization-using size of features in our proposed approach. It reduces the redundant features to larger extent. There are very few research works, which have implemented PCA, ABC and SVM for complete classification. Evaluation parameters like accuracy, F-measure and G-mean are calculated to check classifier efficiency. The proposed system is deployed on 20-Newsgroup dataset. Experiment analysis proves that accuracy is improved using our proposed approach as compared to existing approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.