We report an experimental Quartz Crystal Microbalance (QCM) study of tuning interfacial friction and slip lengths for aqueous suspensions of TiO2 and Al2O3 nanoparticles on planar platinum surfaces by external electric fields. Data were analyzed within theoretical frameworks that incorporate slippage at the QCM surface electrode or alternatively at the surface of adsorbed particles, yielding values for the slip lengths between 0 and 30 nm. Measurements were performed for negatively charged TiO2 and positively charged Al2O3 nanoparticles in both the absence and presence of external electric fields. Without the field the slip lengths inferred for the TiO2 suspensions were higher than those for the Al2O3 suspensions, a result that was consistent with contact angle measurements also performed on the samples. Attraction and retraction of particles perpendicular to the surface by means of an externally applied field resulted in increased and decreased interfacial friction levels and slip lengths. The variation was observed to be non-monotonic, with a profile attributed to the physical properties of interstitial water layers present between the nanoparticles and the platinum substrate.
A design for a Quartz Crystal Microbalance (QCM) setup for use with viscous liquids at temperatures of up to 300 °C is reported. The system response for iron and gold coated QCM crystals to two common lubricant base oils, polyalphaolefin and halocarbon, is reported, yielding results that are consistent with theoretical predictions that incorporate electrode nanoscale surface roughness into their analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.