Corresponding authors: Chongmin.wang@pnnl.gov, xsun9@uwo.ca, Jiguang.zhang@pnnl.gov # These authors contribute equally to this work.
ABSTRACT:The biggest challenge for the commercialization of layered structured nickel rich lithium transition metal oxide cathode is the capacity and voltage fading. Resolving this problem over the years follows an incremental progress. In this work, we report our finding of totally a new approach to revolutionize the cycle stability of aggregated cathode particles for lithium ion battery at both room and elevated temperatures. We discover that infusion of a solid electrolyte into the grain boundaries of the cathode secondary particles can dramatically enhance the capacity retention and voltage stability of the battery. We find that the solid electrolyte infused in the boundaries not only acts as a fast channel for Li ion transport, but also most importantly prevents penetration of the liquid electrolyte into the boundaries, consequently eliminating the detrimental factors that include solid-liquid interfacial reaction, intergranular cracking, and layer to spinel phase transformation. The present work, for the first time, reveals unprecedented insight as how the cathode behaves in the case of not contacting with the liquid electrolyte, ultimately points toward a general new route, via grain boundary engineering, for designing of better batteries of both solid-liquid and solid state systems.
Na-metal batteries are considered as the promising alternative candidate for Li-ion battery beneficial from the wide availability and low cost of sodium, high theoretical specific capacity, and high energy density based on the plating/stripping processes and lowest electrochemical potential. For Na-metal batteries, the crucial problem on metallic Na is one of the biggest challenges. Mossy or dendritic growth of Na occurs in the repetitive Na stripping/plating process with an unstable solid electrolyte interphase layer of nonuniform ionic flux, which can not only lead to the low Coulombic efficiency, but also can create short circuit risks, resulting in possible burning or explosion. In this communication, the atomic layer deposition of Al O coating is first demonstrated for the protection of metallic Na anode for Na-metal batteries. By protecting Na foil with ultrathin Al O layer, the dendrites and mossy Na formation have been effectively suppressed and lifetime has been significantly improved. Furthermore, the thickness of protective layer has been further optimized with 25 cycles of Al O layer presenting the best performance over 500 cycles. The novel design of atomic layer deposition protected metal Na anode may bring in new opportunities to the realization of the next-generation high energy-density Na metal batteries.
Solid-state batteries have been considered as one of the most promising next-generation energy storage systems because of their high safety and energy density. Solid-state electrolytes are the key component of the solid-state battery, which exhibit high ionic conductivity, good chemical stability, and wide electrochemical windows. LATP [LiAlTi (PO)] solid electrolyte has been widely investigated for its high ionic conductivity. Nevertheless, the chemical instability of LATP against Li metal has hindered its application in solid-state batteries. Here, we propose that atomic layer deposition (ALD) coating on LATP surfaces is able to stabilize the LATP/Li interface by reducing the side reactions. In comparison with bare LATP, the AlO-coated LATP by ALD exhibits a stable cycling behavior with smaller voltage hysteresis for 600 h, as well as small resistance. More importantly, on the basis of advanced characterizations such as high-resolution transmission electron spectroscope-electron energy loss spectroscopy, the lithium penetration into the LATP bulk and Ti reduction are significantly limited. The results suggest that ALD is very effective in improving solid-state electrolyte/electrode interface stability.
Metallic Na anode is considered as a promising alternative candidate for Na ion batteries (NIBs) and Na metal batteries (NMBs) due to its high specific capacity, and low potential. However, the unstable solid electrolyte interphase layer caused by serious corrosion and reaction in electrolyte will lead to big challenges, including dendrite growth, low Coulombic efficiency and even safety issues. In this paper, we first demonstrate the inorganic-organic coating via advanced molecular layer deposition (alucone) as a protective layer for metallic Na anode. By protecting Na anode with controllable alucone layer, the dendrites and mossy Na formation have been effectively suppressed and the lifetime has been significantly improved. Moreover, the molecular layer deposition alucone coating shows better performances than the atomic layer deposition AlO coating. The novel design of molecular layer deposition protected Na metal anode may bring in new opportunities to the realization of the next-generation high energy-density NIBs and NMBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.