Corresponding authors: Chongmin.wang@pnnl.gov, xsun9@uwo.ca, Jiguang.zhang@pnnl.gov # These authors contribute equally to this work.
ABSTRACT:The biggest challenge for the commercialization of layered structured nickel rich lithium transition metal oxide cathode is the capacity and voltage fading. Resolving this problem over the years follows an incremental progress. In this work, we report our finding of totally a new approach to revolutionize the cycle stability of aggregated cathode particles for lithium ion battery at both room and elevated temperatures. We discover that infusion of a solid electrolyte into the grain boundaries of the cathode secondary particles can dramatically enhance the capacity retention and voltage stability of the battery. We find that the solid electrolyte infused in the boundaries not only acts as a fast channel for Li ion transport, but also most importantly prevents penetration of the liquid electrolyte into the boundaries, consequently eliminating the detrimental factors that include solid-liquid interfacial reaction, intergranular cracking, and layer to spinel phase transformation. The present work, for the first time, reveals unprecedented insight as how the cathode behaves in the case of not contacting with the liquid electrolyte, ultimately points toward a general new route, via grain boundary engineering, for designing of better batteries of both solid-liquid and solid state systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.