Deep learning (DL), which involves powerful black box predictors, has achieved a remarkable performance in medical image analysis, such as segmentation and classification for diagnosis. However, in spite of these successes, these methods focus exclusively on improving the accuracy of point predictions without assessing the quality of their outputs. Knowing how much confidence there is in a prediction is essential for gaining clinicians' trust in the technology. In this article, we propose an uncertainty estimation framework, called MC-DropWeights, to approximate Bayesian inference in DL by imposing a Bernoulli distribution on the incoming or outgoing weights of the model, including neurones. We demonstrate that by decomposing predictive probabilities into two main types of uncertainty, aleatoric and epistemic, using the Bayesian Residual U-Net (BRUNet) in image segmentation. Approximation methods in Bayesian DL suffer from the "mode collapse" phenomenon in variational inference. To address this problem, we propose a model which Ensembles of Monte-Carlo DropWeights by varying the DropWeights rate. In segmentation, we introduce a predictive uncertainty estimator, which takes the mean of the standard deviations of the class probabilities associated with everyThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.