Material world requires a strong research to produce a new class of materials having light weight, higher strength and better performances. This has been leads to investigate for high strength light weight alloy. The main objective in developing aluminium metal matrix composites is to provide enhanced characteristic performances and properties above the currently available materials. Based upon the literature a new type of aluminium composite has been tries to develop which will offer attractive mechanical properties such as high strength, easy machinability, appreciable density, and low manufacturing cost etc. Aluminum powders of 99.55% purity and 325 mesh sizes are mixed with alloying metals like Copper, Magnesium, Silicon and Silicon Carbide powders in a precisely controlled quantity. During the process of powder metallurgy (P/M) product preparation, it was minutely observed to attain the maximum efficiency and accuracy. Aluminium (Al) is a light weight material but doesn’t possess a good strength. To achieve this, Copper (Cu), Silicon (Si), Magnesium (Mg) & Silicon Carbide (SiC) powders were blended with it at required proportions. The compaction was carried out with help of a C-45 steel die by power compaction press with a load of 150KN to 250KN. The obtained green products were sintered in a Muffle furnace to produce the final Aluminium Metal Matrix Composites (AMMCs) product.
The present material world needs strong research studies for producing varieties of composite materials which have light weight and high strength with better performances. This leads to the introduction of materials through powder metallurgy technique. The main objective is to discover an aluminium matrix composite having enhanced characteristic performances and properties beyond the currently available materials. The current study has been carried out to develop an attractive composite having high strength, light weight, easy machinability, appreciable density, and low manufacturing cost. Aluminium powders of 99.55% purity and 325 mesh sizes are mixed with alloying metals such as copper, magnesium, silicon, and silicon carbide powders in a precisely controlled quantity. The result was found with better mechanical properties, and the XRD patterns were studied in the matrix at different intensities, showing the interfacial bonding of elements gives rise to increase in strength.
The main goal in the advancement of composites with an aluminum metal matrix is to provide high performance and better mechanical properties from the currently available materials. Aluminium metal composite (AMC) can be researched and used in many industrial applications, such as manufacturing, aerospace, defense, pipelines and the automotive industry. The production of AMC is only possible with help of a suitable die in solid route of powder metallurgy process. Thus, the design of die is most important step in the process of powder metallurgy. The shape, size and design of the die directly influence the final AMC product. A number of steps and considerations like stress concentration and the propagation of cracks should be made for designing the die before its manufacture. The present work is made to attempt the fabrication and design of a cold compaction die with EN 10083 steel used for powder metallurgy process.
Metal matrix composites are expanding their range every day due to their various industrial applications in manufacturing sectors, to attain high performance and favorable characteristics such as light weight, more excellent corrosion as well as wear resistance, high specific strength and high temperature-resistance than conventional materials. This study deals with analysis on erosion wear characteristic and corrosion behavior of newly-engineered aluminum metal–matrix composite (Al–0.5Si–0.5Mg–2.5Cu–5SiC) developed by powder metallurgy method. Solid particle erosion test was conducted on the newly developed AMMC product and the execution of design of experiments through Taguchi and statistical techniques demonstrates the feasibility of investigating the erosion characterization and behaviors of the composites. Sixteen set of experimental trials were performed by considering three process parameters (impact angle, stand-off distance, and impact velocity) associated with four levels each. Experimental results in accordance of Taguchi’s orthogonal array design of experiments are analyzed by employing analysis of variance (ANOVA), response surface methodology (RSM) and desirability function approach for analysis, predictive modeling and optimization of erosion rate, respectively. Thereafter, an observation on eroded surface morphology is performed under the influence of impact velocity by employing scanning electron microscope (SEM) to entrench the process. Result shows that, the impact velocity followed by impact angle have significant contribution (80.42 and 8.71%, respectively) in improvement of erosion rate. The methodology proposed in this study collects the experimental results and builds a mathematical model in the domain of interest and optimized the process model. Under the highest desirability (1), desirability-function approach of RSM presented the optimal manufacturing conditions at impact velocity of 18 m/s, stand-off distance of 26 mm and impact angle of 67° with estimated erosion rate of 65.155 mg/kg. The experimental data generated for Al–0.5Si–0.5Mg–2.5Cu–5SiC AMMC will be useful for the industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.