Dengue is the most rapidly spreading viral disease transmitted by the bite of infected Aedes mosquitos. The pathogenesis of dengue is still unclear; although host immune responses and virus serotypes have been proposed to contribute to disease severity. In this study, we examined the circulating dengue virus (DENV) and measured plasma levels of inflammatory mediators. Ninety-eight patients during a dengue outbreak in eastern India in 2016 were included in the study. The presence of DENV was demonstrated by detecting NS1 antigen; IgM capture ELISA and serotypes were discriminated by type-specific RT-PCR and/or sequencing. Plasma samples were assayed for 41-plex cytokine/chemokines using multiplex Luminex assay. Eighty-five (87%) samples were positive by NS1/IgM capture ELISA/RT-PCR. All four serotypes of DENV were detected in this outbreak, with DENV-2 as the predominant type, seen in 55% of cases. Mixed infections were seen in 39% of subjects. Among the host inflammatory biomarkers, GM-CSF, IFN-γ, IL-10, IL-15, IL-8, MCP-1, IL-6, MIP-1β, and TNF-α levels were significantly increased in dengue with and without warning signs, in severe dengue patients in comparison to healthy controls. Four cytokines IFN-γ, GM-CSF, IL-10, and MIP-1β correlated significantly with disease severity and could serve as potential predictor for disease severity. Information on the host biomarkers and the dengue serotype may help guide in optimizing effective intervention strategies.
Acetaminophen (N-acetyl-para-aminophenol (APAP)) toxicity causes acute liver failure by inducing centrilobular hepatic damage as a consequence of mitochondrial oxidative stress. Sterile inflammation, triggered by hepatic damage, facilitates gut bacterial translocation leading to systemic inflammation; TLR4-mediated activation by LPS has been shown to have a critical role in APAP-mediated hepatotoxicity. In this study, we demonstrate significant protection mediated by chitohexaose (Chtx) in mice challenged with a lethal dose of APAP (400 mg/kg b.w.). Decreased mortality by Chtx was associated with reduced hepatic damage, increased peritoneal migration of neutrophils, decreased mRNA expression of IL-1β as well as inhibition of inflammasome activation in liver. Further, an alternate mouse model of co-administration of a sublethal doses of APAP (200 mg/kg b.w.) and LPS (5 mg/kg b.w.) operating synergistically and mediating complete mortality was developed. Overwhelming inflammation, characterized by increased inflammatory cytokines (TNF-α, IL-1β and so on) in liver as well as in circulation and mortality was demonstrable in this model. Also, Chtx administration mediated significant reversal of mortality in APAP+LPS co-administered mice, which was associated with reduced IL-1β in liver and plasma cytokines in this model. In conclusion, Chtx being a small molecular weight linear carbohydrate offers promise for clinical management of liver failure associated with APAP overdose.
Purpose Pseudoexfoliation (PXF) is a unique form of glaucoma characterized by accumulation of exfoliative material in the eyes. Changes in tear profile in disease stages may give us insights into molecular mechanisms involved in causing glaucoma in the eye. Methods All patients were categorized into three main categories; pseudoexfoliation (PXF), pseudoexfoliation glaucoma (PXG) and cataract, which served as control. Cytokines, transforming growth factor β1 (TGFβ1), matrix metalloproteases (MMPs) and fibronectin (FN1) were assessed with multiplex bead assay, enzyme-linked immunosorbent assay (ELISA), gelatin zymography, and immunohistochemistry (IHC) respectively in different ocular tissues such as tears, tenon’s capsule, aqueous humor (AH) and serum samples of patients with PXF stages. Results We found that TGFβ1, MMP-9 and FN1 protein expression were upregulated in tears, tenon’s capsule and AH samples in PXG compared to PXF, though the MMP-9 protein activity was downregulated in PXG compared with control or PXF. We have also found that in PXG tears sample the fold change of TGF-α (Transforming Growth Factor-α), MDC (Macrophage Derived Chemokine), IL-8 (Interleukin-8), VEGF (Vascular Endothelial Growth Factor) were significantly downregulated and the levels of GM-CSF (Granulocyte Macrophage Colony Stimulating Factor), IP-10 (Interferon- γ produced protein-10) were significant upregulated. While in AH; IL-6 (Interleukin-6), IL-8, VEGF, IFN-a2 (Interferon- α2), GRO (Growth regulated alpha protein) levels were found lower and IL1a (Interleukin-1α) level was higher in PXG compared to PXF. And in serum; IFN-a2, Eotaxin, GM-CSF, Fractalkine, IL-10 (Interleukin-10), IL1Ra (Interleukin-1 receptor antagonist), IL-7 (Interleukin-7), IL-8, MIP1β (Macrophage Inflammatory Protein-1β), MCP-1 (Monocyte Chemoattractant Protein-1) levels were significantly upregulated and PDGF-AA (Platelet Derived Growth Factor-AA) level was downregulated in the patients with PXG compared to PXF. Conclusions Altered expression of these molecules in tears may therefore be used as a signal for onset of glaucoma or for identifying eyes at risk of developing glaucoma in PXF.
Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine associated with autoimmune and infectious diseases. Importance of TNF-α in P . falciparum malaria and systemic lupus erythematosus (SLE) have been demonstrated. However, association of functional promoter variants with SLE and malaria is lacking in malaria endemic population. A total of 204 female SLE patients and 224 age and sex matched healthy controls were enrolled in the study. Three hundred fourteen P . falciparum infected patients with different clinical phenotypes were included. TNF-α polymorphisms (G-238A & G-308A) were genotyped by PCR-RFLP. Plasma levels of TNF-α was quantified by ELISA. Heterozygous mutants and minor alleles of TNF-α (G-238A and G-308A) polymorphisms were significantly higher in SLE patients compared to healthy controls and associated with development of lupus nephritis. In addition, both promoter variants were associated with severe P . falciparum malaria. SLE patients demonstrated higher levels of plasma TNF-α compared to healthy controls. TNF-α (G-238A and G-308A) variants were associated with higher plasma TNF-α. In conclusion, TNF-α (G-238A & G-308A) variants are associated with higher plasma TNF-α levels in SLE patients residing in malaria endemic areas and could be a contributing factor in the development of SLE and susceptibility to severe P . falciparum malaria.
Soil-transmitted helminth (STH) infections and malaria are parasitic diseases with enormous global health burdens. Research has demonstrated a relationship between each of these parasites and the gut microbiome, suggesting that the gut microbiota may be implicated in governing host susceptibility to diverse pathogens, and perhaps even coinfection by different pathogens, through similar microbiome-influenced pathways. Here, we have derived a first microbiome community profile associated with STH infections in Odisha, India, and tested the hypothesis that the gut microbiome can modulate host susceptibility to multiple parasite infections through the same pathways. This study revealed several bacterial taxa negatively associated with specific STH infections, including Lactobacillus and Lachnospiracaea. Our results also suggest that relative abundance of Lactobacillus is driven by the STH infection status more so than by the Plasmodium infection status. This study contributes to efforts to understand the effects of the microbiome on host susceptibility to parasitic infections in endemic communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.