Two Corynebacterium strains were isolated from lymph nodes of wild boars showing severe alterations caused by caseous lymphadenitis. The wild boars came from different districts in southern Germany; one was found dead, the other had been shot. The two Corynebacterium strains obtained were both positive for phospholipase D. Further analysis of biochemical profiles did not allow unambiguous differentiation between Corynebacterium ulcerans and Corynebacterium pseudotuberculosis. Fourier-transformed infrared spectroscopy as well as partial sequencing of the genes for 16S rRNA and RNA polymerase beta subunit (rpoB) clearly identified both strains as Corynebacterium ulcerans. The tox gene for diphtheria toxin (DT) could be detected in both porcine isolates by PCR. Partial DNA sequencing of this tox gene showed significant differences from sequences described for other Corynebacterium ulcerans strains and a higher degree of similarity to that of Corynebacterium diphtheria. Production of diphtheria toxin could not be detected. These results indicate that wild game could be a reservoir for zoonotic Corynebacterium ulcerans.
1. The selection pressures that drove dramatic encephalisation processes through the mammal lineage remain elusive, as does knowledge of brain structure reorganisation through this process. In particular, considerable structural brain changes are present across the primate lineage, culminating in the complex human brain that allows for unique behaviours such as language and sophisticated tool use. To understand this evolution, a diverse sample set of humans' closest relatives with varying socio-ecologies is needed. However, current brain banks predominantly curate brains from primates that died in zoological gardens. We try to address this gap by establishing a field pipeline mitigating the challenges associated with brain extractions of wild primates in their natural habitat.
Alpacas are the major camelid species in Europe held for hobbies, animal-aided therapy, and commercial reasons. As a result, health-related issues associated with alpacas are of growing significance. This especially holds true for one of the most serious infectious diseases, caseous lymphadenitis, which is caused by the bacterial pathogen Corynebacterium (C.) pseudotuberculosis. Our study focuses on post-mortem examinations, the laboratory diagnostic tool ELISA, and the immunoblot technique for the detection of specific antibodies against C. pseudotuberculosis and detection of the causative pathogen in alpaca herds. We examined a total of 232 alpacas living in three herds. Four of these alpacas were submitted for post-mortem examination, revealing abscesses, apostematous and fibrinous inflammation in inner organs, pleura, and peritoneum. Serological investigation using a commercial ELISA based on phospholipase D (PLD) as antigen and an in-lab ELISA based on whole cell antigens (WCA) revealed an overall seroprevalence of 56% and 61.2%, respectively. A total of 247 alpaca sera originating from 232 animals were tested comparatively using the in-lab and the commercial ELISA and showed a substantial degree of agreement, of 89.5% (Cohen’s kappa coefficient of 0.784), for both tests. Further comparative serological studies using the two ELISAs and the immunoblot technique were carried out on selected sera originating from 12 breeding stallions and six breeding mares for which epidemiological data and partial C. pseudotuberculosis isolates were available. The results showed the immunoblot to have a sensitivity that was superior to both ELISAs. In this context, it should be emphasized that evaluation of these investigations and the epidemiological data suggest an incubation period of one to two months. Antibiotic susceptibility testing of 13 C. pseudotuberculosis isolates based on the determination of minimal inhibitory concentrations using the broth microdilution method revealed uniform susceptibility to aminopenicillins, cephalosporines, macrolides, enrofloxacin, florfenicol, tetracycline, sulfonamid/trimethoprime, tiamulin, gentamicin, neomycin, spectinomycin, and vancomycin, but resistance to colistin, nitrofurantoin, and oxacillin.
The Eurasian beaver (Castor fiber) has been reintroduced successfully in Germany since the 1990s. Since wildlife is an important source of zoonotic infectious diseases, monitoring of invasive and reintroduced species is crucial with respect to the One Health approach. Three Eurasian beavers were found dead in the German federal states of Bavaria, North Rhine–Westphalia and Baden–Wuerttemberg in 2015, 2021 and 2022, respectively. During post-mortem examinations, Corynebacterium (C.) ulcerans could be isolated from the abscesses of two beavers and from the lungs of one of the animals. Identification of the bacterial isolates at the species level was carried out by spectroscopic analysis using MALDI-TOF MS, FT-IR and biochemical profiles and were verified by molecular analysis based on 16-23S internal transcribed spacer (ITS) region sequencing. Molecular characterization of the C. ulcerans isolates using whole-genome sequencing (WGS) revealed a genome size of about 2.5 Mbp and a GC content of 53.4%. Multilocus sequence typing (MLST) analysis classified all three isolates as the sequence type ST-332. A minimum spanning tree (MST) based on cgMLST allelic profiles, including 1211 core genes of the sequenced C. ulcerans isolates, showed that the beaver-derived isolates clearly group on the branch of C. ulcerans with the closest relationship to each other, in close similarity to an isolate from a dog. Antibiotic susceptibility testing revealed resistance to clindamycin and, in one strain, to erythromycin according to EUCAST, while all isolates were susceptible to the other antimicrobials tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.