Metal-organic frameworks (MOFs) have a large potential for delivery of active molecules. Here, a MOF coating is investigated as a smart host matrix for triggered release of antibiofilm compounds. In addition to a coating consisting of the regular Fe-terephthalate MIL-88B(Fe), a new hydrophobic MIL-88B(Fe) coating is synthesized in hydrothermal conditions using palmitic acid as a lattice terminating group. These porous materials are used as a host matrix for the antibiofilm compound 5-(4-chlorophenyl)-N-(2-isobutyl)-2-aminoimidazole, which has a specific biofilm-inhibiting effect at concentrations at which no activity against planktonic cells is detected. The stability of MIL-88B(Fe) in distilled water and tryptic soy broth medium is investigated, together with the ability of iron(III) chelators to serve as a trigger for controlled decomposition of MIL-88B(Fe) by metal complexation. Organic iron chelators are used to mimic the iron chelating function of siderophores, which are specific molecules excreted by biofilm-forming bacteria. Trisodium citrate is able to chelate metal ions from the junctions of the framework. By sequestration of these metal ions, the host matrix is partially degraded, resulting in an antibiofilm compound release. Finally, the antibiofilm properties against Salmonella Typhimurium are validated by monitoring biofilm growth on MOF layers either loaded or not with aminoimidazole. A strong proof-of-concept is shown for efficient inhibition of biofilm growth through triggered antibiofilm compound release.
Metal-organic frameworks (MOFs) are investigated for the adsorption of aromatic amino acids l-phenylalanine (l-Phe), l-tryptophan (l-Trp), and l-tyrosine (l-Tyr) from aqueous solutions. After screening a range of water-stable MOFs, the hydrophobic Zr-MOF MIL-140C emerged as the best performing material, exhibiting uptakes of 15 wt % for l-Trp and 20 wt % for l-Phe. These uptakes are 5-10 wt % higher than those of large-pore zeolites Beta and Y. Both single-compound and competitive adsorption isotherms for l-Phe and l-Trp were experimentally obtained at the natural pH of these amino acid mixtures (pH 6.5-7) without additional pH modification. We find that the hydrophobic nature of MIL-140C and the capacity of l-Trp to form hydrogen bonds favor the uptake of l-Trp with its larger indole moiety compared to the smaller phenyl side group of l-Phe. On the basis of literature and vibrational analysis, observations of hydrogen-bonded l-Trp within the MIL-140C framework are evidenced by red- and blue-shifted -NH vibrations (3400 cm) in Fourier transform infrared spectroscopy, which were attributed to types N-H···π and N-H···O, respectively. MIL-140C is shown to be recycled at least three times for both aromatic amino acids without any loss of adsorption capacity, separation performance, or crystallinity. Desorption of aromatic amino acids proceeds easily in aqueous ethanol. Substantial coadsorption of negatively charged amino acids l-glutamate and l-aspartate (l-Glu and l-Asp) was observed from a model solution for wheat straw protein hydrolysate at pH 4.3. On the basis of these results, we conclude that MIL-140C is an interesting material for the recovery of essential aromatic amino acids l-Tyr, l-Phe, and l-Trp and of l-Glu and l-Asp from waste protein hydrolysates.
The capping formate anions of the metal–organic framework (MOF) zirconium benzene‐1,3,5‐tricarboxylate (MOF‐808) were removed by a solvent exchange procedure, resulting in a formate‐free MOF‐808 sample containing “geminal” defects consisting of six coordinatively unsaturated sites (CUSs) on each of the Zr6 nodes. Adsorption experiments with this material showed that the uptake of 4‐methylguaiacol from a bio‐oil mixture was proportional to the number of defects and amounted to one mole adsorbed per mole of zirconium. The selective uptake behavior of MOF‐808 towards phenolic compounds was further evident from competitive adsorption experiments between furfuryl alcohol and 4‐methylguaiacol as well as from the excellent (20 wt % for phenolic compounds and <7 wt % for other compounds) uptake performance for real bio‐oil mixtures containing a large concentration and diversity of molecules.
Biofilms, especially those formed by Staphylococcus aureus, play a key role in the development of orthopedic implant infections. Eradication of these infections is challenging due to the elevated tolerance of biofilm cells against antimicrobial agents. In this study, we developed an antibiofilm coating consisting of 5-(4-bromophenyl)-N-cyclopentyl-1-octyl-1H-imidazol-2-amine, designated as LC0024, covalently bound to a titanium implant surface (LC0024-Ti). We showed in vitro that the LC0024-Ti surface reduces biofilm formation of S. aureus in a specific manner without reducing the planktonic cells above the biofilm, as evaluated by plate counting and fluorescence microscopy. The advantage of compounds that only inhibit biofilm formation without affecting the viability of the planktonic cells, is that reduced development of bacterial resistance is expected. To determine the antibiofilm activity of LC0024-Ti surfaces in vivo, a biomaterial-associated murine infection model was used. The results indicated a significant reduction in S. aureus biofilm formation (up to 96%) on the LC0024-Ti substrates compared to pristine titanium controls. Additionally, we found that the LC0024-Ti substrates did not affect the attachment and proliferation of human cells involved in osseointegration and bone repair. In summary, our results emphasize the clinical potential of covalent coatings of LC0024 on titanium implant surfaces to reduce the risk of orthopedic implant infections.
Ni nanoparticles could be stabilised to enable the Ni catalyzed dehydration–decarboxylation–hydrogenation of citric acid to methylsuccinic acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.