Background European grapevine cultivars ( Vitis vinifera spp.) are highly susceptible to the downy mildew pathogen Plasmopara viticola . Breeding of resistant V. vinifera cultivars is a promising strategy to reduce the impact of disease management. Most cultivars that have been bred for resistance to downy mildew, rely on resistance mediated by the Rpv3 ( R esistance to P . v iticola ) locus. However, despite the extensive use of this locus, little is known about the mechanism of Rpv3 -mediated resistance. Results In this study, Rpv3 -mediated defense responses were investigated in Rpv3 + and Rpv3ˉ grapevine cultivars following inoculation with two distinct P. viticola isolates avrRpv3 + and avrRpv3ˉ , with the latter being able to overcome Rpv3 resistance. Based on comparative microscopic, metabolomic and transcriptomic analyses, our results show that the Rpv3–1 -mediated resistance is associated with a defense mechanism that triggers synthesis of fungi-toxic stilbenes and programmed cell death (PCD), resulting in reduced but not suppressed pathogen growth and development. Functional annotation of the encoded protein sequence of genes significantly upregulated during the Rpv3–1 -mediated defense response revealed putative roles in pathogen recognition, signal transduction and defense responses. Conclusion This study used histochemical, transcriptomic and metabolomic analyses of Rpv3 + and susceptible cultivars inoculated with avirulent and virulent P. viticola isolates to investigate mechanism underlying the Rpv3–1 -mediated resistance response. We demonstrated a strong correlation between the expressions of stilbene biosynthesis related genes, the accumulation of fungi-toxic stilbenes, pathogen growth inhibition and PCD. Electronic supplementary material The online version of this article (10.1186/s12870-019-1935-3) contains supplementary material, which is available to authorized users.
Summary A wild grape haplotype (Rpv3‐1) confers resistance to Plasmopara viticola. We mapped the causal factor for resistance to an interval containing a TIR‐NB‐LRR (TNL) gene pair that originated 1.6–2.6 million years ago by a tandem segmental duplication. Transient coexpression of the TNL pair in Vitis vinifera leaves activated pathogen‐induced necrosis and reduced sporulation compared with control leaves. Even though transcripts of the TNL pair from the wild haplotype appear to be partially subject to nonsense‐mediated mRNA decay, mature mRNA levels in a homozygous resistant genotype were individually higher than the mRNA trace levels observed for the orthologous single‐copy TNL in sensitive genotypes. Allelic expression imbalance in a resistant heterozygote confirmed that cis‐acting regulatory variation promotes expression in the wild haplotype. The movement of transposable elements had a major impact on the generation of haplotype diversity, altering the DNA context around similar TNL coding sequences and the GC‐content in their proximal 5′‐intergenic regions. The wild and domesticated haplotypes also diverged in conserved single‐copy intergenic DNA, but the highest divergence was observed in intraspecific and not in interspecific comparisons. In this case, introgression breeding did not transgress the genetic boundaries of the domesticated species, because haplotypes present in modern varieties sometimes predate speciation events between wild and cultivated species.
Background The high susceptibility of European grapevine cultivars (Vitis vinifera) to downy mildew (Plasmopara viticola) leads to the intensive use of fungicides in viticulture. To reduce this input, breeding programs have introgressed resistance loci from wild Vitis species into V. vinifera, resulting in new fungus-resistant grapevine cultivars (FRC). However, little is known about how these different resistance loci confer resistance and what the potential reduction in fungicide applications are likely to be if these FRCs are deployed. To ensure a durable and sustainable resistance management and breeding, detailed knowledge about the different defense mechanisms mediated by the respective Rpv (Resistance to P. viticola) resistance loci is essential. Results A comparison of the resistance mechanisms mediated by the Rpv3–1, Rpv10 and/or Rpv12-loci revealed an early onset of programmed cell death (PCD) at 8 hours post infection (hpi) in Rpv12-cultivars and 12 hpi in Rpv10-cultivars, whereas cell death was delayed in Rpv3-cultivars and was not observed until 28 hpi. These temporal differences correlated with an increase in the trans-resveratrol level and the formation of hydrogen peroxide shortly before onset of PCD. The differences in timing of onset of Rpv-loci specific defense reactions following downy mildew infection could be responsible for the observed differences in hyphal growth, sporulation and cultivar-specific susceptibility to this pathogen in the vineyard. Hereby, Rpv3- and Rpv12/Rpv3-cultivars showed a potential for a significant reduction of fungicide applications, depending on the annual P. viticola infection pressure and the Rpv-loci. Furthermore, we report on the discovery of a new P. viticola isolate that is able to overcome both Rpv3- and Rpv12-mediated resistance. Conclusion This study reveals that differences in the timing of the defense reaction mediated by the Rpv3-, Rpv10- and Rpv12-loci, result in different degrees of natural resistance to downy mildew in field. Vineyard trials demonstrate that Rpv12/Rpv3- and Rpv3-cultivars are a powerful tool to reduce the dependence of grape production on fungicide applications. Furthermore, this study indicates the importance of sustainable breeding and plant protection strategies based on resistant grapevine cultivars to reduce the risk of new P. viticola isolates that are able to overcome the respective resistance mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.