Hydroxynitrile lyase from the white rabbit's foot fern Davallia tyermannii (DtHNL) catalyzes the enantioselective synthesis of α-cyanohydrins, which are key building blocks for pharmaceutical and agrochemical industries. An efficient and competitive process necessitates the availability and robustness of the biocatalyst. Herein, the recombinant production of DtHNL1 in Komagataella phaffii, yielding approximately 900 000 U L , is described. DtHNL1 constitutes approximately 80 % of the total protein content. The crude enzyme was immobilized. Crosslinked enzyme aggregates (CLEAs) resulted in significant enhancement of the biocatalyst stability under acidic conditions (activity retained after 168 h at pH 2.4). The DtHNL1-CLEA was employed for (R)-mandelonitrile synthesis (99 % conversion, 98 % enantiomeric excess) in a biphasic system, and evaluated for the synthesis of (R)-hydroxypivaldehyde cyanohydrin under reaction conditions that immediately inactivated non-immobilized DtHNL1. The results show the DtHNL1-CLEA to be a stable biocatalyst for the synthesis of enantiomerically pure cyanohydrins under acidic conditions.
Nitrile hydratases (NHase) catalyze the hydration of nitriles to the corresponding amides. We report on the heterologous expression of various nitrile hydratases. Some of these enzymes have been investigated by others and us before, but sixteen target proteins represent novel sequences. Of 21 target sequences, 4 iron and 16 cobalt containing proteins were functionally expressed from Escherichia coli BL21 (DE3) Gold. Cell free extracts were used for activity profiling and basic characterization of the NHases using the typical NHase substrate methacrylonitrile. Co-type NHases are more tolerant to high pH than Fe-type NHases. A screening for activity on three structurally diverse nitriles was carried out. Two novel Co-dependent NHases from Afipia broomeae and Roseobacter sp. and a new Fe-type NHase from Gordonia hydrophobica were very well expressed and hydrated methacrylonitrile, pyrazine-carbonitrile, and 3-amino-3-(p-toluoyl)propanenitrile. The Co-dependent NHases from Caballeronia jiangsuensis and Microvirga lotononidis, as well as two Fe-dependent NHases from Pseudomonades, were—in addition—able to produce the amide from cinnamonitrile. Summarizing, seven so far uncharacterized NHases are described to be promising biocatalysts.
The active pharmaceutical ingredient levetiracetam has anticonvulsant properties and is used to treat epilepsies. Herein, we describe the enantioselective preparation of the levetiracetam precursor 2-(pyrrolidine-1-yl)butanamide by enzymatic dynamic kinetic resolution with a nitrile hydratase enzyme. A rare representative of the family of iron-dependent nitrile hydratases from Gordonia hydrophobica (GhNHase) was evaluated for its potential to form 2-(pyrrolidine-1-yl)butanamide in enantioenriched form from the three small, simple molecules, namely, propanal, pyrrolidine and cyanide. The yield and the enantiomeric excess (ee) of the product are determined most significantly by the substrate concentrations, the reaction pH and the biocatalyst amount. GhNHase is also active for the hydration of other nitriles, in particular for the formation of N-heterocyclic amides such as nicotinamide, and may therefore be a tool for the preparation of various APIs.
Oxidative alkene cleavage is a highly interesting reaction to obtain aldehydes and ketones. The Mn‐dependent protein TM1459 from Thermotoga maritima can catalyse alkene cleavage of styrene derivatives in the presence of tert‐butyl hydroperoxide. Despite the high thermal stability of the enzyme, it gets inactivated during the reaction. The data reported here indicate that auto‐oxidation is responsible for the low stability of TM1459 in the oxidative environment required for the alkene cleavage reaction. By targeting the exchange of residues prone to oxidation, this phenomenon was successfully prevented. Importantly, the stability to oxidation conveyed by the amino acid exchanges led to increased enzyme activity. However, the exchanges resulted in slightly modified positions of two of the four metal‐binding amino acids, thereby strongly impacting metal binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.