Background: Hereditary hearing impairment (HHI) is a heterogeneous class of disorders that shows various patterns of inheritance and involves a multitude of different genes. Mutations in the EYA4 gene are responsible for postlingual, progressive, autosomal dominant hearing loss at the DFNA10 locus. EYA4 is orthologous to the Drosophila gene eya ("eyes absent"), a key regulator of eye formation. EYA4 plays an important role in several developmental processes. Material and Methods: Here we report a Hungarian family displaying sensorineural, progressive hearing impairment. The family comprising four generations with 11 affected and 8 unaffected members was subjected to genome-wide linkage analysis and candidate gene sequencing.Results: By linkage analysis, the chromosomal region 6q22.3 was shown to segregate with the disease. Mutation analysis of the EYA4 gene, which maps to 6q22.3, revealed an insertion of 4 bp (1558insTTTG) in all affected family members. This insertion creates a frameshift and results in a stop codon at position 379. Hence, nearly the complete "eya homologous region" (eyaHR), which is essential for the protein function, would be deleted in the mutant EYA4 protein if the transcription were found to be stable. Conclusions: This family is the third one linked to DFNA10 and revealing a mutation in the EYA4 gene. In all three families, the mutations are localized in different regions of the eyaHR, suggesting that this protein contains several functional subregions with different tissue-specific importance.
Abstract. Mutations in the GJB2 gene are the most common cause of hereditary prelingual sensorineural hearing impairment in Europe. Several studies indicate that different members of the connexin protein family interact to form gap junctions in the inner ear. Mutations in different connexin genes may accumulate and, consequently lead to hearing impairment. Therefore, we screened 47 Hungarian GJB2-heterozygous (one mutation in coding exon of the GJB2 gene) patients with hearing impairment for DNA changes in two further connexin genes (GJB6 and GJB3) and in the 5' non-coding region of GJB2 including the splice sites. Eleven out of 47 GJB2-heterozygous patients analyzed carried the splice site mutation -3170G>A in the 5'UTR region of GJB2. One out of these 11 patients showed homozygous -3170G>A genotype in combination with p.R127H. Next to the GJB2 mutations we noted 2 cases of deletion in GJB6 [Δ(GJB6-D13S1830)] and 3 (2 new and 1 described) base substitutions in GJB3 [c. 357C>T, c.798C>T and c.94C>T (p.R32W)] which are unlikely disease-causing. Our results suggest the importance of routine screening for the rather frequent -3170G>A mutation (in addition to c.35delG) in patients with hearing impairment.
These authors contributed equally to this work. Communicated by Mark H. PaalmanMutations in the GJB2 gene encoding the gap-junction protein connexin 26 have been identified in many patients with childhood hearing impairment (HI). One single mutation, c.35delG, accounts for the majority of mutations in Caucasian patients with HI. In the present study we screened 500 healthy control individuals and a group of patients with HI from Northeastern Hungary for GJB2 mutations. The patients' group consisted of 102 familial from 28 families and 92 non-familial cases. The most common mutation in the Hungarian population is the c.35delG, followed by the c.71G>A (p.W24X) mutation. 34.3% of the patients in the familial group were homozygous, and 17.6% heterozygous for 35delG. In the non-familial group the respective values were 37% and 18% (allele frequency: 46.2%). In the general population an allele frequency of 2.4% was determined. Several patients were identified with additional, already described or new GJB2 mutations, mostly in heterozygous state. The mutation c.380G>A (p.R127H) was formerly found only in heterozygous state and its disease relation was controversial. We demonstrated the presence of this mutation in a family with three homozygous patients and 4 heterozygous unaffected family members, a clear indication of recessively inherited HI. Furthermore, we provided evidence for the pathogenic role of two new mutations, c.51C>A (p.S17Y) and c.177G>T (p.G59V), detected in the present study. In the latter case the pattern of inheritance might be dominant. Our results confirm the importance of GJB2 mutations in the Hungarian population displaying mutation frequencies that are comparable with those in the Mediterranean area.
Mutations in the GJB2 gene encoding the gap-junction protein connexin 26 have been identified in many patients with childhood hearing impairment (HI). One single mutation, 35delG (30delG), accounts for up to 70% of all analyzed European patients with autosomal recessive inherited HI and 10% of patients with HI of unknown origin, respectively. We screened 188 control individuals and 342 German patients with non-syndromic sporadic HI for the 35delG, compound heterozygosity and other GJB2 mutations by PCR, restriction enzyme based screening, SSCP and sequencing. In all patients, non-progressive hearing impairment varied from moderate to profound involving all frequencies. This study revealed one novel silent mutation (438C/T), three novel gene variants resulting in amino acid substitutions (K112E, T123S, K223R) and two novel HI-related mutations (I82M, 313del14).
Mutations in GJB2, the gene encoding for the Gap Junction protein Connexin 26 (Cx26), have been established as the major cause of hereditary, non-syndromic hearing impairment (HI). We report here the identification of a novel point mutation in GJB2, c.40A>G [p.N14D], detected in compound heterozygosity with the c.35delG mutation in two brothers with moderate non-syndromic sensorineural HI. The mother who carried one wildtype and a p.N14D allele displayed normal hearing. The mutation leads to substitution of the neutral amino acid asparagine (N) by the negatively charged aspartic acid (D) at amino acid number 14, a position that is conserved among Cx26 of different organisms and among many other connexin isoforms. To investigate the impact of this mutation on protein function, Cx26 activity was measured by depolarization activated hemichannel conductance in non-coupled Xenopus laevis oocytes. Oocytes injected with the p.N14D mutant cRNA showed strongly reduced currents compared to wildtype. Coinjection of wildtype and mutant cRNA at equimolar levels restored the conductive properties supporting the recessive character of this mutation. Total Cx26 protein expression and cell surface abundance examined by western blotting and by quantitative immunoassays revealed that the hemichannel was properly synthesized but not integrated into the plasma membrane. In this study we have shown that the GJB2 mutation p.N14D is associated with recessively inherited HI and exhibits a defective phenotype due to diminished expression at the cell surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.