SummaryPaMTH1, a putative methyltransferase previously described to increase in abundance in total protein extracts during aging of Podospora anserina is demonstrated to accumulate in the mitochondrial cell fraction of senescent cultures. The protein is localized in the mitochondrial matrix and displays a methyltransferase activity utilizing flavonoids as substrates. Constitutive over-expression of PaMth1 in P. anserina results in a reduced carbonylation of proteins and an extended lifespan without impairing vital functions suggesting a protecting role of PaMTH1 against oxidative stress.
PaMTH1 is an O-methyltransferase
catalysing the methylation of vicinal hydroxyl groups of polyphenols. The protein accumulates during ageing of Podospora
anserina in both the cytosol and in the mitochondrial matrix. The
construction and characterisation of a PaMth1 deletion strain
provided additional evidence about the function of the protein in the
protection against metal induced oxidative stress. Deletion of PaMth1
was found to lead to a decreased resistance against exogenous oxidative
stress and to a shortened lifespan suggesting a role of PaMTH1 as a
longevity assurance factor in a new molecular pathway involved in lifespan
control.
Work from more than 50 years of research has unraveled a number of molecular pathways that are involved in controlling aging of the fungal model system Podospora anserina. Early research revealed that wild-type strain aging is linked to gross reorganization of the mitochondrial DNA. Later it was shown that aging of P. anserina does also take place, although at a slower pace, when the wild-type specific mitochondrial DNA rearrangements do not occur. Now it is clear that a network of different pathways is involved in the control of aging. Branches of these pathways appear to be connected and constitute a hierarchical system of responses. Although cross talk between the individual pathways seems to be fundamental in the coordination of the overall system, the precise underlying interactions remain to be unraveled. Such a systematic approach aims at a holistic understanding of the process of biological aging, the ultimate goal of modern systems biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.