Gap junctions belong to the most conserved cellular structures in multicellular organisms, from Hydra to man. They contain tightly packed clusters of hydrophilic membrane channels connecting the cytoplasms of adjacent cells, thus allowing direct communication of cells and tissues through the diffusion of ions, metabolites, and cyclic nucleotides. Recent evidence suggests that gap junctions are constructed by three different families of four transmembrane proteins: the Connexins and the Innexins found in vertebrates and in invertebrates, respectively, and the Innexin-like Pannexins, which were recently discovered in humans. This article focuses on the Drosophila Innexin multiprotein family, which is comprised of eight members. We highlight common structural features and discuss recent findings that suggest close similarities in cellular distribution, function, and regulation of Drosophila Innexins and vertebrate gap junction proteins.
Gap junctions consist of clusters of intercellular channels, which enable direct cell-to-cell communication and adhesion in animals. Whereas deuterostomes, including all vertebrates, use members of the connexin and pannexin multiprotein families to assemble gap junction channels, protostomes such as Drosophila and Caenorhabditis elegans use members of the innexin protein family. The molecular composition of innexin-containing gap junctions and the functional significance of innexin oligomerization for development are largely unknown. Here, we report that heteromerization of Drosophila innexins 2 and 3 is crucial for epithelial organization and polarity of the embryonic epidermis. Both innexins colocalize in epithelial cell membranes. Innexin3 is mislocalized to the cytoplasm in innexin2 mutants and is recruited into ectopic expression domains defined by innexin2 misexpression. Conversely, RNA interference (RNAi) knockdown of innexin3 causes mislocalization of innexin2 and of DE-cadherin, causing cell polarity defects in the epidermis. Biochemical interaction studies, surface plasmon resonance analysis, transgenesis, and biochemical fractionation experiments demonstrate that both innexins interact via their C-terminal cytoplasmic domains during the assembly of heteromeric channels. Our data provide the first molecular and functional demonstration that innexin heteromerization occurs in vivo and reveal insight into a molecular mechanism by which innexins may oligomerize into heteromeric gap junction channels.
Integrin transmembrane receptors mediate cell adhesion through intracellular linker proteins that connect to the cytoskeleton. Of the numerous linker proteins identified, only a few, including Talin and Integrin-linked-kinase (ILK), are essential and evolutionarily conserved. The wech gene encodes a newly discovered and highly conserved regulator of integrin-mediated adhesion in Drosophila melanogaster. Embryos deficient in wech have very similar phenotypes to integrin-null or Talin-null embryos, including muscle detachment from the body wall. The Wech protein contains a B-box zinc-finger and a coiled-coil domain, which is also found in RBCC/TRIM family members, and an NHL domain. In beta-integrin or Talin mutants, Wech is mislocalized, whereas ILK localization depends on Wech. We provide evidence that Wech interacts with the head domain of Talin and the kinase domain of ILK, and propose that Wech is required to connect both core proteins of the linker complex during embryonic muscle attachment. Both the NHL and the B-box/coiled-coil domains of Wech are required for proper interaction with Talin and ILK. The single murine Wech orthologue is also colocalized with Talin and ILK in muscle tissue. We propose that Wech proteins are crucial and evolutionarily conserved regulators of the integrin-cytoskeleton link.
We recently demonstrated that heteromerization of innexins 2 and 3 from Drosophila melanogaster (Dm) is crucial for epithelial organization and polarity of the embryonic epidermis. Both innexins are thought to interact via their C-terminal cytoplasmic domains during the assembly of heteromeric gap junction channels. However, the mechanisms that control heteromeric versus homomeric channel formation are still largely unknown. Here we report the isolation of both non-modified and 2'-fluoro-2'-deoxy-modified RNA anti-innexin 2 aptamers by in vitro selection. The aptamers bind to a proximal epitope on the carboxyl-tail of Dm innexin 2 protein and specifically inhibit the heterologous interaction of innexin 2 and innexin 3 carboxyl-termini in vitro. These domain-specific inhibitors represent the first step towards functional studies focusing on the activity of these domains in vivo.
Members of the integrin family of cell adhesion receptors are pivotal to the formation of complex tissues and organs in animals. They mediate cell adhesion by interacting with the extracellular matrix and by binding to intracellular linker proteins that connect to the cytoskeleton. We have recently identified a new and evolutionarily conserved component of the linker complex, the Drosophila Wech protein. Wech is essential for embryonic muscle attachment. It belongs to the RBCC/TRIM family of cytoplasmic multidomain proteins and contains a carboxyterminal NHL domain. Wech protein is specifically localized to the embryonic muscle attachment sites and wech mutant embryos show muscle detachment from the body wall. In beta-integrin or talin mutants Wech is mislocalized, as the localization of Integrin-linked-kinase (ILK) depends on Wech. Biochemical data indicate that Wech is associated with the head domain of Talin and the kinase domain of ILK suggesting that Wech may be involved in the linkage of both core proteins of the linker complex. We discuss that Wech proteins may be crucial and evolutionarily conserved regulators of cell-type specific integrin functions and that their activities may underlie complex regulation by microRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.