To investigate the role of the N and C termini in channel function and voltage-dependent gating of mitochondrial porin, we expressed wild-type and mutant porins from Neurospora crassa as His-tag fusion products in Escherichia coli. Large quantities of the proteins were purified by chromatography across a nickle-nitrilotriacetic acid-agarose column under denaturing conditions. The purified His-tagged wild-type protein could be functionally reconstituted in the presence of detergent and sterol and behaved in black lipid bilayer membranes indistinguishably from native porin isolated from Neurospora crassa mitochondria. Mutants of porin lacking part of the N terminus (DeltaN2-12porin, DeltaN3-20porin), part of the C terminus (DeltaC269-283porin), or both (DeltaN2-12/DeltaC269-283porin) also showed channel forming activity. The mutant porin lacking the C terminus had a smaller single channel conductance than the wild-type protein, but its other biophysical properties were identical. DeltaN2-12porin and DeltaN3-20porin formed noisy channels with decreased channel stability. These channels were still voltage-dependent. DeltaN2-12/DeltaC269-283porin lost channel stability and had altered gating characteristics. These results are discussed with respect to different models that have been proposed in the literature for the structure of mitochondrial porin channels.
Experiments were performed on lipid bilayer membranes with water-soluble mitochondrial porins from different eukaryotic organisms, such as Dictyostelium discoideum, Paramecium, and rat liver, to study the requirements of functional reconstitution of the porins. The water-soluble porins lost their associated lipids and sterols and are unable to form channels in lipid bilayer membranes. We demonstrate that the water-soluble porins regain their channel-forming ability after preincubation of the polypeptides with sterols in the presence of detergents. Mitochondrial porin from Dictyostelium discoideum maintained after this procedure its original properties, in particular the voltage dependence. Water-soluble mitochondrial porins from Paramecium tetraurelia and from rat liver were also activated upon preincubation with different sterols in detergent but showed voltage-dependences that were different from those of detergent-purified porins. Furthermore, the voltage dependence depended on the sterol used for preincubation. Interestingly, the preincubation with sterols can likewise be used to activate detergent-purified mitochondrial porins that may have lost associated sterol during isolation and purification procedures.
BACKGROUND Careful selection and testing of plasma reduces the risk of blood‐borne viruses in the starting material for plasma‐derived products. Furthermore, effective measures such as pasteurization at 60°C for 10 hours have been implemented in the manufacturing process of therapeutic plasma proteins such as human albumin, coagulation factors, immunoglobulins, and enzyme inhibitors to inactivate blood‐borne viruses of concern. A comprehensive compilation of the virus reduction capacity of pasteurization is presented including the effect of stabilizers used to protect the therapeutic protein from modifications during heat treatment. STUDY DESIGN AND METHODS The virus inactivation kinetics of pasteurization for a broad range of viruses were evaluated in the relevant intermediates from more than 15 different plasma manufacturing processes. Studies were carried out under the routine manufacturing target variables, such as temperature and product‐specific stabilizer composition. Additional studies were also performed under robustness conditions, that is, outside production specifications. RESULTS The data demonstrate that pasteurization inactivates a wide range of enveloped and nonenveloped viruses of diverse physicochemical characteristics. After a maximum of 6 hours' incubation, no residual infectivity could be detected for the majority of enveloped viruses. Effective inactivation of a range of nonenveloped viruses, with the exception of nonhuman parvoviruses, was documented. CONCLUSION Pasteurization is a very robust and reliable virus inactivation method with a broad effectiveness against known blood‐borne pathogens and emerging or potentially emerging viruses. Pasteurization has proven itself to be a highly effective step, in combination with other complementary safety measures, toward assuring the virus safety of final product.
Pea root plastid porin (Fischer et al. (1994) J. Biol. Chem. 269, 25754-25760), which belongs to the family of mitochondrial (eukaryotic) porins, was expressed in Escherichia coli in high amounts using the pQE expression system. The recombinant protein was reconstituted into lipid bilayer membranes, and its characteristic properties were compared to those of the native porin isolated from pea root plastids. No significant difference was found between the native and the recombinant form when the protein was preincubated in detergent and sterol. The recombinant porin seems to be a valuable model system for the study of eukaryotic porins by spectroscopic methods, in which high amounts of protein are needed. CD spectroscopy was performed to determine the secondary structure of the porin under different conditions. It was found to have a high degree of beta-sheet structure in the nonionic detergent Genapol X-80 and in lipid vesicles. The more polar detergent sodium dodecyl sulfate (SDS) induced a large amount of alpha-helix structure in the protein. Addition of sterol to the porin in Genapol buffer did not influence its secondary structure to any measurable extent, whereas it had a strong influence on channel forming activity in black lipid bilayers. First refolding experiments performed in decreasing urea concentrations are discussed together with the results of the other measurements with regard to protein folding and channel formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.