There is a pressing need to mobilise the wealth of knowledge from the international mycotoxin research conducted over the past 25-30 years, and to perform cutting-edge research where knowledge gaps still exist. This knowledge needs to be integrated into affordable and practical tools for farmers and food processors along the chain in order to reduce the risk of mycotoxin contamination of crops, feed and food. This is the mission of MyToolBox -a four-year project which has received funding from the European Commission. It mobilises a multi-actor partnership (academia, farmers, technology small and medium sized enterprises, food industry and policy stakeholders) to develop novel interventions aimed at achieving a significant reduction in crop losses due to mycotoxin contamination. Besides a field-to-fork approach, MyToolBox also considers safe use options of contaminated batches, such as the efficient production of biofuels. Compared to previous efforts of mycotoxin reduction strategies, the distinguishing feature of MyToolBox is to provide the recommended measures to the end users along the food and feed chain in a web-based MyToolBox platform (e-toolbox). The project focuses on small grain cereals, maize, peanuts and dried figs, applicable to agricultural conditions in the EU and China. Crop losses using existing practices are being compared with crop losses after novel pre-harvest interventions including investigation of genetic resistance to fungal infection, cultural control (e.g. minimum tillage or crop debris treatment), the use of novel biopesticides suitable for organic farming, competitive biocontrol treatment and development of novel modelling approaches to predict mycotoxin contamination. Research into post-harvest measures includes real-time monitoring during storage, innovative sorting of crops using vision-technology, novel milling technology and studying the effects of baking on mycotoxins at an industrial scale.
Affordable and practical tools for farmers and food processors along the chain are required to efficiently reduce the risk of mycotoxin contamination of crops, feeds and foods. Developing new tools and enhancing existing ones was the mission of MyToolBox—a four-year EU-project that included important Chinese partners and joint research efforts. To identify future directions in mycotoxin research and management in China and their role in China–EU relations, a unique stakeholder workshop including group discussions was organized in Beijing. Six related topics: biocontrol, forecasting, sampling and analysis, silo management, detoxification, and the development of safe use options for contaminated materials were covered. The discussions clearly identified a critical need for smart, integrated strategies to address mycotoxin issues to attain safer food and feed, and to minimize losses and export rejections. Managing data on when, where and the size of mycotoxin contamination events and identifying the institution(s) to manage them are complex issues in China. Studies of microbes and novel, genetically-altered enzymes to limit pre-harvest contamination and to manage post-harvest product detoxification and alternate uses of contaminated materials are in the early stages in China. Further efforts are needed to increase the visibility of mycotoxin problems beyond the scientific and research communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.