The human HMGI-C gene encoding a member of the high mobility group protein family normally is expressed only during embryonic/fetal development but in none of the adult tissues tested so far. Recently, the HMGI-C gene has attracted a lot of interest since its rearrangements seem to underlie the development of frequent benign mesenchymal tumors. We have therefore checked CD34 positive hematopoietic stem cells and their normal and malignant descendants for HMGI-C expression. CD34 positive stem cells from healthy donors and the leukemia samples tested were positive while all peripheral blood samples from healthy volunteers were negative. We have concluded that the expression of the HMGI-C gene in leukemia seems to be a secondary effect due to abnormal stem cell proliferation and might be a sensitive tumor marker for particular types of leukemia.
Constitutional interstitial deletions of 5q are uncommon. The corresponding phenotype is not well defined. But severe mental retardation seems to be a consistent manifestation. We describe a 4-year-old girl with a de novo deletion of 5q33.3q35.1 presenting only with mild psychomotor delay, minor facial anomalies, and seizures.
S U M M A R YWe report a case of a de novo complex chromosomal rearrangement among five chromosomes found in a clinically healthy woman. The only indication for chromosome analysis was a planned intracytoplasmatic sperm injection. Physical examination, including internal and external genitals, and ovaries and hormone status were normal. Banding cytogenetics showed a rearrangement among chromosomes #3, #4, #7, #9, and #17. Twenty-fourcolor fluorescence in situ hybridization and multicolor banding were applied to characterize the translocations and breakpoints more precisely. This confirmed the involved chromosomes and revealed two breakpoints in chromosome #4. This six-breakpoint rearrangement [der(3)t(3;4), der(4)t(17;4;7), der(7)t(3;7), der(9)t(4;9), and der(17)t(9;17)] seemed to be balanced on a molecular cytogenetic level, although submicroscopic deletions or duplications close to the breakpoints cannot be excluded.
Mediator Complex Subunit 12 (MED12) is part of the transcriptional preinitiation machinery. Mutations of its gene predominantly occur in two types of highly frequent benign tumors, uterine leiomyomas and fibroadenomas of the breast, where they apparently act as driver mutations. Nevertheless, their presence is not restricted to benign tumors having been found at considerable frequencies in uterine leiomyosarcomas, malignant phyllodes tumors, and chronic lymphocytic leukemia also. Most of the mutations are located within exon 2 of the gene but in rare cases the intron 1/exon 2 boundary or exon 1 are affected. As to their type, predominantly single nucleotide exchanges with a hotspot in one codon are found, but small deletions clustering around that hotspot also are not uncommon. These latter deletions are leaving the open reading frame intact. As to the types of mutations, so far no apparent differences between the tumor entities affected have emerged. Interestingly, this pattern with small deletions clustered around the hotspot of single nucleotide exchanges resembles that seen as a result of targeted gene editing. In contrast to other driver mutations the percentage of
MED12-mutation positive tumors of independent clonal origin increases with the number of tumors per patient suggesting unknown etiological factors supporting site specific mutagenesis. These factors may act by inducing simultaneous site-specific double strand breaks the erroneous repair of which may lead to corresponding mutations. As inducers of DNA damage and its repair such as foreign nucleic acids of the microbiome displaying sequence homology to the putative target site might play a role. Interestingly, a 16 base pair homology of the hotspot to a putative terminator base-paired hairpin sequence of a Staphylococcus aureus tRNA gene cluster has been noted which might form R-loop like structures with its target sequence thus inducing said changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.