Quinolones and magnesium deficiency cause similar lesions in joint cartilage of young animals. Chondrocytes cultivated in the presence of quinolones and in Mg-free medium show severe alterations in cytoskeleton and decreased ability to adhere to the culture dish. We investigated whether Mg2+ supplementation can prevent quinolone-mediated effects on chondrocytes in vitro. Chondrocytes cultivated in Dulbecco's modified Eagle's medium/HAM's F-12 medium were treated with ciprofloxacin (80 and 160 microg/ml) and enrofloxacin (100 and 150 microg/ml). Mg2+ was added at a concentration of 0.0612 mg/ml (MgCl) and 0.0488 mg/ml (MgSO4) or a triple dose. In addition, cells were cultivated in Mg-free medium and accordingly treated with Mg2+ supplementation. After 5 days in culture, the number of adherent cells per milliliter was determined. The number of chondrocytes in quinolone-treated groups decreased to 12-36% that of the control group within the culture period. With Mg2+ supplementation, the number of attached cells increased to 40-70% that of control cells. The threefold dose of Mg2+ led to better results than did the single dose. Cell proliferation tested by immunohistochemical staining with Ki67 (clone MIB5) decreased from 70% in control groups to 55%, 48%, and 30% in enrofloxacin-treated groups in a concentration dependent manner (50, 100, and 150 microg/ml). Addition of Mg2+ did not increase the rate of cell proliferation. These results suggest that a great part of quinolone-induced damage is due to magnesium complex formation, as Mg2+ supplementation is able to reduce the effects in vitro. However, quinolone effects on cell proliferation seem to be an independent process that is not influenced by magnesium supplementation.
Cyclooxygenase (COX) inhibitors, already widely used to reduce fever, inflammation and pain, are under increasing consideration as potential agents for the prevention and treatment of neoplasia. As COX-2 was detected in human and canine osteosarcomas, we have evaluated the effect of the preferential COX-2 inhibitor meloxicam on an established D-17 canine osteosarcoma cell line, which expressed, as well as COX-1 and COX-2 also COX-3 (as demonstrated by Western blot). An XTT proliferation kit was used to assess surviving cells after drug treatment. At low concentrations (1, 2, 4 and 10 microm) meloxicam caused an increase in cell numbers while a marked anti-proliferative effect was observed at higher concentrations (100, 200 microm) after 3 days and also 3 weeks of incubation. The chemotherapeutic drug doxorubicin showed a cytotoxic effect at all concentrations (60-1920 nm). Exposure of tumour cells to combinations of meloxicam and doxorubicin revealed synergistic effects (with 240 nm doxorubicin), as well as sub-additive and antagonistic results, especially if combined with concentrations of meloxicam typically found in serum. Care should be taken in concluding, on the basis of one in vitro study, that meloxicam does not have a role in the treatment of canine osteosarcomas given that the results from in vivo studies may differ.
Local recurrence of feline soft tissue sarcomas is common despite aggressive treatment. Liposomal doxorubicin might serve as a depot radiosensitizer if administered concomitantly with daily radiotherapy and thus improve tumor control. In this pilot study, the feasibility of concomitant liposomal radiochemotherapy was evaluated in a palliative setting in 10 cats with advanced soft tissue sarcomas. Cats were treated with median number of 5 (range 5-7) daily fractions of radiotherapy and a median total dose of 20 Gy (range 20-31.5 Gy). One dose of liposomal doxorubicin was administered at the beginning of radiotherapy. Seven cats received further free or liposomal doxorubicin after completion of the liposomal doxorubicin/radiation protocol. Seven of the treated 10 cats (70%) achieved a partial (n=5) or complete (n=2) response with a median response duration of 237 days. The median progression free interval in all 10 cats was 117 days and the median overall survival time was 324 days. Concomitant liposomal radiochemotherapy was tolerated well in nine cats, one cat experienced temporary anorexia. Although the number of patients is too small to make definitive conclusions, results appear promising enough to investigate the role of liposomal doxorubicin as a radiosensitizer further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.