Interest in climate change effects on groundwater has increased dramatically during the last decade. The mechanisms of climate-related groundwater depletion have been thoroughly reviewed, but the influence of global warming on groundwater-dependent ecosystems (GDEs) remains poorly known. Here we report long-term water temperature trends in 66 northern European cold-water springs. A vast majority of the springs (82%) exhibited a significant increase in water temperature during 1968-2012. Mean spring water temperatures were closely related to regional air temperature and global radiative forcing of the corresponding year. Based on three alternative climate scenarios representing low (RCP2.6), intermediate (RCP6) and high-emission scenarios (RCP8.5), we estimate that increase in mean spring water temperature in the region is likely to range from 0.67 °C (RCP2.6) to 5.94 °C (RCP8.5) by 2086. According to the worst-case scenario, water temperature of these originally cold-water ecosystems (regional mean in the late 1970s: 4.7 °C) may exceed 12 °C by the end of this century. We used bryophyte and macroinvertebrate species data from Finnish springs and spring-fed streams to assess ecological impacts of the predicted warming. An increase in spring water temperature by several degrees will likely have substantial biodiversity impacts, causing regional extinction of native, cold-stenothermal spring specialists, whereas species diversity of headwater generalists is likely to increase. Even a slight (by 1 °C) increase in water temperature may eliminate endemic spring species, thus altering bryophyte and macroinvertebrate assemblages of spring-fed streams. Climate change-induced warming of northern regions may thus alter species composition of the spring biota and cause regional homogenization of biodiversity in headwater ecosystems.
21This paper provides an overview of regional geochemical mapping using stream 22 sediments from central and south-western Nigeria. A total of 1569 stream sediment 23 samples were collected and 54 major and trace elements determined by ICP-MS and 24Au, Pd and Pt by fire assay. Geostatistical techniques (e.g. correlation analysis and 25 principal factor analysis) were used to explore the data, following appropriate data 26 transformation, to understand the data structure, investigate underlying processes 27 controlling spatial geochemical variability and identify element associations.
Abstract. The groundwater in a shallow, unconfined, lowlying coastal aquifer in Santala, southern Finland, was chemically characterised by integrating multivariate statistical approaches, principal component analysis (PCA) and hierarchical cluster analysis (HCA), based on the stable isotopes δ 2 H and δ 18 O, hydrogeochemistry and field monitoring data. PCA and HCA yielded similar results and classified groundwater samples into six distinct groups that revealed the factors controlling temporal and spatial variations in the groundwater geochemistry, such as the geology, anthropogenic sources from human activities, climate and surface water. High temporal variation in groundwater chemistry directly corresponded to precipitation. With an increase in precipitation, KMnO 4 consumption, EC, alkalinity and Ca concentrations also increased in most wells, while Fe, Al, Mn and SO 4 were occasionally increased during spring after the snowmelt under specific geological conditions. The continued increase in NO 3 and metal concentrations in groundwater indicates the potential contamination risk to the aquifer. Stable isotopes of δ 18 O and δ 2 H indicate groundwater recharge directly from meteoric water, with an insignificant contribution from lake water, and no seawater intrusion into the aquifer. Groundwater geochemistry suggests that local seawater intrusion is temporarily able to take place in the sulfate reduction zone along the freshwater and seawater mixed zone in the low-lying coastal area, but the contribution of seawater was found to be very low. The influence of lake water could be observed from higher levels of KMnO 4 consumption in wells near the lake. The integration of PCA and HCA with conventional classification of groundwater types, as well as with the hydrogeochemical data, provided useful tools to identify the vulnerable groundwater areas representing the impacts of both natural and human activities on water quality and the understanding of complex groundwater flow system for the aquifer vulnerability assessment and groundwater management in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.