The mechanism of bicarbonate transport across the peritubular cell membrane was investigated in rat kidney proximal tubules in situ by measuring cell pH and cell Na+ activity in response to sudden reduction of peritubular Na+ and/or HCO3-. The following observations were made: 1. sudden peritubular reduction of either ion concentration produced the same transient depolarizing potential response; 2. bicarbonate efflux in response to peritubular reduction of bicarbonate was accompanied by sodium efflux; 3. sodium efflux in response to peritubular sodium removal was accompanied by cell acidification indicating bicarbonate efflux; 4. all aforementioned phenomena were inhibited by SITS (10(-3) mol/l) except for a small SITS-independent sodium efflux and depolarization which occurred in response to peritubular sodium removal and was not accompanied by cell pH changes; 5. bicarbonate efflux and accompanying potential changes in response to reduction of peritubular bicarbonate virtually vanished in sodium-free solutions. From these observations we conclude that bicarbonate efflux proceeds as rheogenic sodium-bicarbonate cotransport with a stoichiometry of bicarbonate to sodium greater than 1. The question which of the charged species of the bicarbonate buffer system moves cannot yet be decided. Attempts to determine the stoichiometry from the SITS-inhibitable initial cell depolarization and from the SITS-inhibitable initial fluxes suggest a stoichiometry of 3 HCO3-: 1 Na+. In addition to sodium-dependent bicarbonate flux, evidence was obtained for a sodium-independent transport system of acids or bases which is able to regulate cell pH even in sodium-free solutions.
While acid loading with extracellular NH4Cl solutions usually first alkalinizes the cells through NH3 influx, and acidifies only when NH4Cl is removed, Xenopus oocytes became immediately acidic upon NH4Cl addition and the cells did not acidify further upon its removal. Since NH4Cl solutions also collapsed the membrane potential (Vm) and resistance (Rm), we conclude that primarily NH4+ entered the cells where it liberated H+, with NH3 being trapped in intracellular lipid stores. To identify the NH4+ permeation pathway we have used K+ channel blockers (Ba2+, Cs+, tetraethylammonium, quinidine), various cation transport inhibitors (ouabain, bumetanide, amiloride) and other inhibitors, some of which block non-selective cation channels (La3+, diphenylamine-2-carboxylate, and p-chloromercuribenzoate). However, only the latter substances partially prevented the collapse of Vm and Rm. This suggests, that NH4+ passes through non-selective cation channels. In accordance with the voltage dependence and/or stretch activation of such channels NH4+ fluxes appeared to be asymmetric. NH4+ influx, which depolarized and swelled the cells, was large and acidified rapidly, while the efflux, which repolarized and shrank the cells, was slow and alkalinized only slowly.
؉ -peptide cotransporter PepT1 that is colocated with SGLT1 in small intestinal enterocytes. Using coexpression of SGLT1 and PepT1 in Xenopus oocytes or polarized Caco-2 cells that contain both transporters we demonstrated that the tripeptides were effective when applied to the extracellular compartment. After a 1-h perfusion of intact rat small intestine with QSP, glucose absorption was reduced by 30%. The data indicate that orally applied tripeptides can be used to down-regulate small intestinal glucose absorption, e.g. in diabetes mellitus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.