Fluxes of some Volatile Organic Compounds (VOC) from grass were measured at a golf course in western Sweden, using the Relaxed Eddy Accumulation (REA) technique. The sampling was done by collecting VOC onto adsorbent tubes and the analysis was performed by thermal desorption followed by GC/MS. High emissions were observed after cutting. Transient fluxes of (Z)-3-hexenyl acetate (0.51 microg m(-2) s(-1)), (Z)-3-hexen-1-ol (0.14 microg m(-2) s(-1)) and (Z)-3-hexenal (0.40 microg m(-2) s(-1)) were measured, even at low temperatures. The REA technique requires a relatively large fetch area that is sometimes not available. Therefore, a procedure for correcting measured fluxes from a limited fetch is suggested.
Determinations of PCB were carried out as part of a project aimed at developing cleanup methods for PCB-containing elastic sealant used in outdoor joints between concrete blocks. The goals of the project were to develop methods, which minimise the spread of PCB to the outdoor environment and to indoor air, and which keep the PCB levels as low as reasonably possible in the workplace environment whilst removing the elastic sealant. The following PCB determinations were carried out: (1) concentration in the elastic sealant; (2) concentration in the concrete close to the sealant; (3) concentration in soil; (4) concentration in the indoor air; and (5) concentration in the air in the workplace environment. The cleanup process consisted of a number of different steps: (1) cutting the elastic sealant with an oscillating knife; (2) grinding the concrete with a mechanical machine; (3) sawing the concrete with a mechanical saw and (4) cutting the concrete with a mechanical chisel. In all these different steps a high capacity vacuum cleaner connected to the machines was used. The elastic sealant contained 4.7 to 8.1% total PCB of a technical product with a composition most similar to Clophene A40. The concrete close to the sealant (first 2 mm) contained 0.12 and 1.7% total PCB at two different places. The pattern of the PCB in the concrete resembled that of the sealant. PCB concentrations in the soil from the ground close to the building were 0.1 and 0.3 ppm at two different places before the remedial action. The source of the PCB in the soil is most likely the sealant as the PCB pattern is similar for the two materials. The PCB levels in the workplace air at the beginning of the project, when the techniques were not fully developed, were generally above the occupational exposure limit of 10 micrograms m-3 (up to 120 micrograms m-3). Later when the techniques were optimised to better take care of dust and gases produced during the cutting and grinding etc., the levels were below or close to 10 micrograms m-3. The pattern of the PCB in the workplace air was different from that of the sealant and contained higher levels of lighter components. The PCB concentrations in the indoor air were measured before and during the remedial process. The levels were around 600 ng m-3 and there was no significant increase during the removal of the sealant. The PCB level after the remedial action will be measured later. The pattern of the PCB in the indoor air was different from that of the sealant as well as from that of the workplace air. Higher levels of the lighter PCB were present indoors compared to the composition in both workplace air and in sealant. Extracts of PCB were analysed by GC-MS with a SIM method (selected ion monitoring). Standard procedures were used for extraction of solid materials. For the air samples an OVS tube was used with XAD-2 as adsorbent. The filter and adsorbent were extracted with toluene. This work shows that it is important to perform remedial action of PCB-containing elastic sealant as: (1) there is a spread...
Data of chemical emissions from flooring materials have been collected and investigated in a database known as METS. The emission tests are performed using the Field and Laboratory Emission Cell (FLEC). The emission rates of total volatile organic compounds (TVOC) in the boiling point range of hexane to octadecane varies from around 4,000 micrograms/(m2.h) to less than 10 micrograms/(m2.h). Results obtained 1994/95 are presented and compared with the results obtained in 1992 for similar materials. The tests are performed 4 weeks and 26 weeks after the manufacturing of the material. The emission rates of TVOC decrease on the average approximately 60% from 4 to 26 weeks. The differences and trends in emission rates of individual chemicals and their use are discussed. For many VOCs emission rates decrease rapidly and become near to or below 2 micrograms/(m2.h) (the detection limit) after 26 weeks. For a small number of individual compounds the emission rate decrease little over 26 weeks. A small number of chemicals are singled out for particular interest in a health and comfort evaluation based on the emission results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.