Lipid storage in plants is achieved among all plant species by formation of oleosomes, enclosing oil (triacylglycerides) in small subcellular droplets. Seeds are rich in this pre-emulsified oil to provide a sufficient energy reservoir for growing. The triacylglyceride core of the oleosomes is surrounded by a phospholipid monolayer containing densely packed proteins called oleosins. They are anchored in the triacylglycerides core with a hydrophobic domain, while the hydrophilic termini remain on the surface. These specialized proteins are expressed during seed development and maturation. Particularly, they play a major role in the stabilization and function of oleosomes. To better understand the importance of oleosins for oleosome stabilization, enzymatic digestion of oleosins was performed. This made it possible to compare and correlate changes in the molecular structure of oleosins and changing macroscopic properties of oleosomes. Tryptic digestion cleaves the hydrophilic part of the oleosins, which is accompanied by a loss of secondary structures as evidenced by Fourier-transform infrared and sum frequency generation spectra. After digestion, the ability of oleosins to stabilize oil-water or air-water interfaces was lost. The surface charge and the associated aggregation behavior of oleosomes are governed by interactions typical of proteins before digestion and by interactions typical of phospholipids after digestion.
The combination of different gelling and nongelling hydrocolloids is known to yield complex systems with a wide range of mechanical properties. Here, the influence of the nongelling hydrocolloids sodium-alginate and xanthan on the gelation of agarose is investigated. The two polyelectrolytes differ significantly in their flexibility, leading to opposing effects on the thermomechanical properties of the resulting composite gels. The network structure of the agarose as well as viscoelasticity, gelling temperature, and thermal stability of the gels are altered. These properties are investigated by strain and temperature dependent oscillatory rheological measurements as well as confocal laser scanning microscopy. A phenomenological model to describe the network formation of agarose in the presence of alginate or xanthan respectively is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.