The genus Cladosporium is one of the largest genera of dematiaceous hyphomycetes, and is characterised by a coronate scar structure, conidia in acropetal chains and Davidiella teleomorphs. Based on morphology and DNA phylogeny, the species complexes of C. herbarum and C. sphaerospermum have been resolved, resulting in the elucidation of numerous new taxa. In the present study, more than 200 isolates belonging to the C. cladosporioides complex were examined and phylogenetically analysed on the basis of DNA sequences of the nuclear ribosomal RNA gene operon, including the internal transcribed spacer regions ITS1 and ITS2, the 5.8S nrDNA, as well as partial actin and translation elongation factor 1-α gene sequences. For the saprobic, widely distributed species Cladosporium cladosporioides, both a neotype and epitype are designated in order to specify a well established circumscription and concept of this species. Cladosporium tenuissimum and C. oxysporum, two saprobes abundant in the tropics, are epitypified and shown to be allied to, but distinct from C. cladosporioides. Twenty-two species are newly described on the basis of phylogenetic characters and cryptic morphological differences. The most important phenotypic characters for distinguishing species within the C. cladosporioides complex, which represents a monophyletic subclade within the genus, are shape, width, length, septation and surface ornamentation of conidia and conidiophores; length and branching patterns of conidial chains and hyphal shape, width and arrangement. Many of the treated species, e.g., C. acalyphae, C. angustisporum, C. australiense, C. basiinflatum, C. chalastosporoides, C. colocasiae, C. cucumerinum, C. exasperatum, C. exile, C. flabelliforme, C. gamsianum, and C. globisporum are currently known only from specific hosts, or have a restricted geographical distribution. A key to all species recognised within the C. cladosporioides complex is provided.
Fungal growth in damp or water-damaged buildings worldwide is an increasing problem, which has adverse effects on both the occupants and the buildings. Air sampling alone in moldy buildings does not reveal the full diversity of fungal species growing on building materials. One aim of this study was to estimate the qualitative and quantitative diversity of fungi growing on damp or water-damaged building materials. Another was to determine if associations exist between the most commonly found fungal species and different types of materials. More than 5,300 surface samples were taken by means of V8 contact plates from materials with visible fungal growth. Fungal identifications and information on building material components were analyzed using multivariate statistic methods to determine associations between fungi and material components. The results confirmed that Penicillium chrysogenum and Aspergillus versicolor are the most common fungal species in water-damaged buildings. The results also showed Chaetomium spp., Acremonium spp., and Ulocladium spp. to be very common on damp building materials. Analyses show that associated mycobiotas exist on different building materials. Associations were found between (i) Acremonium spp., Penicillium chrysogenum, Stachybotrys spp., Ulocladium spp., and gypsum and wallpaper, (ii) Arthrinium phaeospermum, Aureobasidium pullulans, Cladosporium herbarum, Trichoderma spp., yeasts, and different types of wood and plywood, and (iii) Aspergillus fumigatus, Aspergillus melleus, Aspergillus niger, Aspergillus ochraceus, Chaetomium spp., Mucor racemosus, Mucor spinosus, and concrete and other floor-related materials. These results can be used to develop new and resistant building materials and relevant allergen extracts and to help focus research on relevant mycotoxins, microbial volatile organic compounds (MVOCs), and microparticles released into the indoor environment.Most water damage indoors is due to natural disaster (e.g., flooding) or human error (e.g., disrepair). Water can seep into a building as a result of melting snow, heavy rain, or sewer system overflow. Water vapor can be produced by human activities like cooking, laundering, or showering and then condense on cold surfaces like outer walls, windows, or furniture. Damp or water-damaged building materials are at high risk of fungal growth (mold growth), possibly resulting in health problems for the occupants and the deterioration of the buildings. The water activity (a w ) (a w ϫ 100 ϭ % relative humidity at equilibrium) of a building material is the determining factor for fungal growth and varies with the temperature and the type of material (27). The longer a material's a w is over 0.75, the greater the risk of fungal growth (49), though different fungi have different a w preferences (11). Some filamentous fungi can grow on a material when the a w is as low as 0.78 (26), while others can survive 3 weeks at an a w of 0.45 (30). The severity of indoor dampness varies with the climate, but WHO (52) estimates that in Austral...
No abstract
During a study of indoor fungi, 145 isolates belonging to Chaetomiaceae were cultured from air, swab and dust samples from 19 countries. Based on the phylogenetic analyses of DNA-directed RNA polymerase II second largest subunit (rpb2), β-tubulin (tub2), ITS and 28S large subunit (LSU) nrDNA sequences, together with morphological comparisons with related genera and species, 30 indoor taxa are recognised, of which 22 represent known species, seven are described as new, and one remains to be identified to species level. In our collection, 69 % of the indoor isolates with six species cluster with members of the Chaetomium globosum species complex, representing Chaetomium sensu stricto. The other indoor species fall into nine lineages that are separated from each other with several known chaetomiaceous genera occurring among them. No generic names are available for five of those lineages, and the following new genera are introduced here: Amesia with three indoor species, Arcopilus with one indoor species, Collariella with four indoor species, Dichotomopilus with seven indoor species and Ovatospora with two indoor species. The generic concept of Botryotrichum is expanded to include Emilmuelleria and the chaetomium-like species B. muromum (= Ch. murorum) in which two indoor species are included. The generic concept of Subramaniula is expanded to include several chaetomium-like taxa as well as one indoor species. Humicola is recognised as a distinct genus including two indoor taxa. According to this study, Ch. globosum is the most abundant Chaetomiaceae indoor species (74/145), followed by Ch. cochliodes (17/145), Ch. elatum (6/145) and B. piluliferum (5/145). The morphological diversity of indoor Chaetomiaceae as well as the morphological characteristics of the new genera are described and illustrated. This taxonomic study redefines the generic concept of Chaetomium and provides new insight into the phylogenetic relationships among different genera within Chaetomiaceae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.