Galatius, A., Andersen, M.E.R., Haugan, B., Langhoff, H.E and Jespersen, Å. Timing of epiphyseal development in the flipper skeleton of the harbour porpoise ( Phocoena phocoena ) as an indicator of paedomorphosis. -Acta Zoologica (Stockholm) 87 : 77-82Epiphyseal development was investigated on X-rays of flippers from 158 harbour porpoises from Danish waters. Development followed a proximodistal pattern similar to what is known in other cetacean species. Ossification of epiphyses was rare in the phalanges of the first and fifth digits and in the more distal phalanges of the second, third and fourth digits. Along with the morphology of the first metacarpal and the more distal phalanges this suggested paedomorphosis relative to delphinids. Male and female porpoises showed similar progression of epiphyseal development until approximately the sixth year. From then on, female porpoises showed more progressed development than males. This suggests a higher level of paedomorphosis in the male porpoise. The mechanism behind phocoenid paedomorphosis seems to be progenesis, probably as an adaptation towards a high reproductive rate relative to the delphinids.
BackgroundThree kidney systems appear during vertebrate development: the pronephroi, mesonephroi and metanephroi. The pronephric duct is the first or primary ureter of these kidney systems. Its role as a key player in the induction of nephrogenic mesenchyme is well established. Here we investigate whether the duct is involved in urine modification using larvae of the freshwater amphibian Ambystoma mexicanum (axolotl) as model.ResultsWe investigated structural as well as physiological properties of the pronephric duct. The key elements of our methodology were: using histology, light and transmission electron microscopy as well as confocal laser scanning microscopy on fixed tissue and applying the microperfusion technique on isolated pronephric ducts in combination with single cell microelectrode impalements. Our data show that the fully differentiated pronephric duct is composed of a single layered epithelium consisting of one cell type comparable to the principal cell of the renal collecting duct system. The cells are characterized by a prominent basolateral labyrinth and a relatively smooth apical surface with one central cilium. Cellular impalements demonstrate the presence of apical Na+ and K+ conductances, as well as a large K+ conductance in the basolateral cell membrane. Immunolabeling experiments indicate heavy expression of Na+/K+-ATPase in the basolateral labyrinth.ConclusionsWe propose that the pronephric duct is important for the subsequent modification of urine produced by the pronephros. Our results indicate that it reabsorbs sodium and secretes potassium via channels present in the apical cell membrane with the driving force for ion movement provided by the Na+/K+ pump. This is to our knowledge the first characterization of the pronephric duct, the precursor of the collecting duct system, which provides a model of cell structure and basic mechanisms for ion transport. Such information may be important in understanding the evolution of vertebrate kidney systems and human diseases associated with congenital malformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.