Animosity towards mathematics is a very common worldwide problem and it is usually caused by wrong information, low participation, low challenge tolerance, falling further behind, being unemployed, and avoiding the advanced math classes needed for success in many careers. In this study, we have considered and formulated the new SEATS compartmental mathematical model with optimal control theory to analyze the dynamics of university students’ animosity towards mathematics. We applied the next-generation matrix, Ruth-Hurwitz criteria, Lyapunov function, and Volterra-Lyapunov stable matrices to show local and global stability of equilibrium points of the model respectively. The study demonstrated that the animosity-free equilibrium point is both locally and globally asymptotically stable whenever the model basic reproduction number is less than unity, whereas the animosity-dominance equilibrium point is both locally and globally asymptotically stable when the model basic reproduction number is greater than unity. Finally, we applied numerical ode45 solvers using the Runge–Kutta method and we have carried out numerical simulations and shown that applying both prevention and treatment controls is the best strategy to minimize and possibly eradicate the animosity-infection in the community under consideration.
Recently, violence, racism, and their coexistence have been very common issues in most nations in the world. In this newly social science discipline mathematical modelling approach study, we developed and examined a new violence and racism coexistence mathematical model with eight distinct classes of human population (susceptible, violence infected, negotiated, racist, violence-racism coinfected, recuperated against violence, recuperated against racism, and recuperated against the coinfection). The model takes into account the possible controlling strategies of violence-racism coinfection. All the submodels and the violence-racism coexistence model equilibrium points are calculated, and their stabilities are analyzed. The model threshold values are derived. As a result of the model qualitative analysis, the violence-racism coinfection spreads under control if the corresponding basic reproduction number is less than unity, and it propagates through the community if this number exceeds unity. Moreover, the sensitivity analysis of the parameter values of the full model is illustrated. We have applied MATLAB ode45 solver to illustrate the numerical results of the model. Finally, from qualitative analysis and numerical solutions, we obtain relevant and consistent results.
In this study, we have proposed and analyzed a new COVID-19 and syphilis co-infection mathematical model with 10 distinct classes of the human population (COVID-19 protected, syphilis protected, susceptible, COVID-19 infected, COVID-19 isolated with treatment, syphilis asymptomatic infected, syphilis symptomatic infected, syphilis treated, COVID-19 and syphilis co-infected, and COVID-19 and syphilis treated) that describes COVID-19 and syphilis co-dynamics. We have calculated all the disease-free and endemic equilibrium points of single infection and co-infection models. The basic reproduction numbers of COVID-19, syphilis, and COVID-19 and syphilis co-infection models were determined. The results of the model analyses show that the COVID-19 and syphilis co-infection spread is under control whenever its basic reproduction number is less than unity. Moreover, whenever the co-infection basic reproduction number is greater than unity, COVID-19 and syphilis co-infection propagates throughout the community. The numerical simulations performed by MATLAB code using the ode45 solver justified the qualitative results of the proposed model. Moreover, both the qualitative and numerical analysis findings of the study have shown that protections and treatments have fundamental effects on COVID-19 and syphilis co-dynamic disease transmission prevention and control in the community.
Recently, violence has been a very common and serious public health problem in the world. In this new mathematical modeling tactic study, we formulated and examined the firsthand violence mathematical model with five distinct classes of the human population (susceptible, violence-exposed, violence, negotiated, and reconciled). The model takes into account the diffusion of violence and infection. The violence-free and violence-dominance model equilibrium points are calculated, and their local and global stabilities are analyzed. The model threshold values are obtained. As a result of the model analysis, the violence diffusion is under control if the basic reproduction number is less than unity, and it diffuses through the community if this number exceeds unity. Besides, the sensitivity analysis of the parameter values of the basic reproduction number is demonstrated. We have applied the MATLAB ode45 solver to illustrate the numerical results of the model. Finally, from analytical and numerical solutions, we obtain jointly equivalent and consistent results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.