G protein-coupled receptor 55 existed throughout the whole intestine of rats. O-1602 or CBD selectively normalized the motility disturbances. Possible mechanisms involved systemic anti-inflammation and the regulation of myoelectrical activity of the intestine.
Objectives: The anti-inflammatory effects of O-1602 and cannabidiol (CBD), the ligands of G proteinYcoupled receptor 55 (GPR55), on experimental acute pancreatitis (AP) were investigated.Methods: Acute pancreatitis was induced in C57BL mice by intraperitoneal injection of 50 Kg/kg cerulein hourly, with a total of 6 times. Drugs (O-1602, 10 mg/kg, or CBD, 0.5 mg/kg) were given by intraperitoneal injection 2 times at 30 minutes before the first injection and immediately before the fifth cerulein injection. At 3 hours after the last injection, the blood, the lungs, and the pancreas were harvested for the pancreatic enzyme activity, myeloperoxidase activity, and pro-inflammatory cytokines measurement; and the expressions of GPR55 mRNA and protein in the pancreas were detected.Results: Cannabidiol or O-1602 treatment significantly improved the pathological changes of mice with AP and decreased the enzyme activities, IL-6 and tumor necrosis factor > levels, and the myeloperoxidase activities in plasma and in the organ tissues. G proteinYcoupled receptor 55 mRNA and protein expressed in the pancreatic tissue, and the expressions were decreased in the mice with AP, and either CBD or O-1602 attenuated these changes to a certain extent.Conclusion: Cannabidiol and O-1602 showed anti-inflammatory effects in mice with AP and improved the expression of GPR55 in the pancreatic tissue as well.
Cannabinoid-1 (CB1) receptor activation affects gastrointestinal propulsion in vivo. It was our aim to further characterize the involved myenteric mechanisms in vivo and in vitro. In CB1(-/-) mice and wild-type littermates we performed in vivo transit experiments by charcoal feeding and in vitro electrophysiological recordings in mouse small intestinal smooth muscle. Ascending neuronal contraction (ANC) following electrical field stimulation was studied in rat ileum in a partitioned organ bath separating the aboral stimulation site from the oral recording site. The knockout animals displayed an accelerated upper gastrointestinal transit compared to control animals. The CB1 receptor antagonist AM251 stimulated the force of the ANC in a concentration dependent manner when added in the oral chamber. Anandamide significantly inhibited the ANC when added in the oral chamber. Neither AM251 nor anandamide had an influence on the contraction latency. No effects were observed when drugs were added in the aboral chamber, proving a CB1 mediated action on the neuromuscular junction. Resting membrane potentials and neuronal induced inhibitory junction potentials in CB1(-/-) mice were unchanged as compared to wild type. However, the electrophysiological slow waves were more sensitive to blockade of Ca(2+) channels in CB1(-/-) mice. Our data strongly suggest a physiological involvement of the CB-1 receptor in the regulation of small intestinal motility. Therefore, CB1 receptors are a promising target for the treatment of motility disorders.
P38/Mk2 (mitogen-activated protein kinase (MAPK)-activated protein kinase-2, also known as MAKAP kinase-2) is a member of the mitogen-activated protein kinases (MAPKs) family, and participates in inflammatory responses directly or indirectly. WIN55, 212-2 (WIN55) is a synthetic non-selective agonist of cannabinoid (CB) receptors with remarkable antiinflammatory properties. This study was to explore the roles of WIN55 and p38/Mk2 signaling pathway in dextran sodium sulfate (DSS)-induced mouse colitis and ascertain their anti-inflammatory mechanisms. Colitis was induced in C57BL Mk2 gene homozygous deletion (Mk2 À / À ) and wild-type mice by replacing the drinking water with 4% DSS solution for 7 days. DSS-treated mice developed bloody stool, weight loss, and eye-visible multiple bleeding ulcers on colon mucosa. The mRNA expressions levels of TNF-a and IL-6, as well as the protein levels of p38 and its phosphorylated form (p-p38), were upregulated in the colon. The plasma levels of TNF-a, IL-6, cytokine-induced neutrophil chemoattractant-1 (CINC-1), monocyte chemoattractant protein-1 (MCP-1), and lung myeloperoxidase (MPO) activities were raised; however, all these changes were less severe in Mk2 À / À mice. After WIN55 intervention, the Mk2 À / À mice recovered faster and better from the induced colitis than their wild-type counterparts. The results indicate that the Mk2 homozygous deletion in mice impedes the induction of experimental colitis by DSS, confirming the notion that p38/Mk2 is involved in this inflammatory response. WIN55 protects mice against DSS-induced colitis, in particular when the p38/Mk2 pathway is obstructed, implying that the activation of CB system, together with blocking of p38/Mk2 pathway, serves as a potential drug target for colitis treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.