Sine oculis (so) and eyes absent (eya) are required for Drosophila eye development and are founding members of the mammalian Six and Eya gene families. These genes have been proposed to act with eyeless (Pax6) to regulate eye development in vertebrates and invertebrates. so encodes a highly diverged homeobox transcription factor and eya encodes a novel nuclear protein. We demonstrate that So and Eya (1) regulate common steps in eye development including cell proliferation, patterning, and neuronal development; (2) synergize in inducing ectopic eyes; and (3) interact in yeast and in vitro through evolutionarily conserved domains. We propose that an So/Eya complex regulates multiple steps in eye development and functions within the context of a network of genes to specify eye tissue identity.
The SAM-T99 protocol can be run on the web at http://www.cse.ucsc.edu/research/compbio/HMM-apps/T99-query.html and the alignment tune-up option described here can be run at http://www.cse.ucsc.edu/research/compbio/HMM-apps/T99-tuneup.html. The protocol is also part of the standard SAM suite of tools. http://www.cse.ucsc.edu/research/compbio/sam/
In our paper entitled "The Eye-Specification Proteins So and Eya Form a Complex and Regulate Multiple Steps in Drosophila Eye Development" (1997, Cell 91, 881-891), Figure 6C, lane 3 is missing due to an error in processing the figure for publication. The corrected Figure 6 is shown below.
The purpose of the study was to evaluate the accuracy of monochromatic energy (MonoE) computed tomography (CT) images reconstructed by spectral CT in predicting the stopping power ratio $( SP{R}_w)$ of materials in the presence of metal. The CIRS062 phantom was scanned three times using spectral CT. In the first scan, a solid water insert was placed at the center of the phantom $(C{T}_{no\ metal})$. In the second scan, the solid water insert was replaced with a titanium alloy femoral head $(C{T}_{metal})$. The metal artifact reduction (MAR) algorithm was used in the last scan $(C{T}_{metal+ MAR})$. The MonoE-CT images of 40 keV and 80 keV were reconstructed. Finally, the single-energy CT method (SECT) and the dual-energy CT method (DECT) were used to calculate the $SP{R}_w$. The mean absolute error (MAE) of the $SP{R}_w$ of the inner layer inserts calculated by the SECT method were 3.19%, 13.88% and 2.71%, corresponding to $C{T}_{no\ metal}$, $C{T}_{metal}$ and $C{T}_{metal+ MAR}$, respectively. For the outer layer inserts, the MAE of $SP{R}_w$ were 3.43%, 5.42% and 2.99%, respectively. Using the DECT method, the MAE of the $SP{R}_w$ of the inner layer inserts was 1.30%, 3.69% and 1.46% and the MAE of the outer layer inserts– was 1.34%, 1.36% and 1.05%. The studies shows that, compared with the SECT method, the accuracy of the DECT method in predicting the $SP{R}_w$ of a material is more robust to the presence of metal. Using the MAR algorithm when performing CT scans can further improve the accuracy of predicting the SPR of materials in the presence of metal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.