SummaryThe ER is composed of distinct structures like tubules, matrices, and sheets, all of which are important for its various functions. However, how these distinct ER structures, especially the perinuclear ER sheets, are formed remains unclear. We report here that the ER membrane protein Climp63 and the ER luminal protein calumenin-1 (Calu1) collaboratively maintain ER sheet morphology. We show that the luminal length of Climp63 is positively correlated with the luminal width of ER sheets. Moreover, the lumen-only mutant of Climp63 dominant-negatively narrows the lumen of ER sheets, demonstrating that Climp63 acts as an ER luminal bridge. We also reveal that Calu1 specifically interacts with Climp63 and antagonizes Climp63 in terms of both ER sheet distribution and luminal width. Together, our data provide insight into how the structure of ER sheets is maintained and regulated.
Extracellular proteins are vital for cell activities, such as cell migration. Calumenin is highly conserved among eukaryotes, but its functions are largely unclear. Here, we identify extracellular calumenin as a suppressor of cell migration and tumor metastasis. Calumenin binds to and stabilizes fibulin-1, leading to inactivation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling. We further identify the minimal functional domain of calumenin (amino acids 74-138 and 214-280). Depletion of calumenin induces fibulin-1- and phospho-ERK1/2 (pERK1/2)-dependent promotion of cell migration. Consistently, in hepatocellular and pancreatic carcinoma, both calumenin and fibulin-1 are downregulated. Furthermore, we show that matrix metalloproteinase-13 (MMP-13) proteolyzes fibulin-1 and that calumenin protects fibulin-1 from cleavage by MMP-13. Calumenin, together with fibulin-1, also interacts with fibronectin and depends on both syndecan-4 and α5β1-integrin to suppress ERK1/2 signaling and inhibit cell migration. Thus, extracellular calumenin regulates fibulin-1 to have crucial roles in ERK1/2 signaling and cell migration.
Filopodia, which are actin-rich finger-like membrane protrusions, have an important role in cell migration and tumor metastasis. Here we identify 13 novel calumenin (Calu) isoforms (Calu 3–15) produced by alternative splicing, and find that Calu-15 promotes filopodia formation and cell migration. Calu-15 shuttles between the nucleus and cytoplasm through interacting with importin α, Ran GTPase, and Crm1. The phosphorylation of the threonine at position 73 (Thr-73) by casein kinase 2 (CK2) is essential for the nuclear import of Calu-15, and either Thr-73 mutation or inhibition of CK2 interrupts its nuclear localization. In the nucleus, Calu-15 increases the transcription of growth differentiation factor-15 (GDF-15), a member of the transforming growth factor-β (TGF-β) superfamily, via binding to its promoter region. Furthermore, Calu-15 induces filopodia formation mediated by GDF-15. Together, we identify that Calu-15, a novel isoform of Calu with phosphorylation-dependent nuclear localization, has a critical role in promoting filopodia formation and cell migration by upregulating the GDF-15 transcription.
Calumenin isoforms 1 and 2 (calu-1/2), encoded by the CALU gene, belong to the CREC protein family. Calu-1/2 proteins are secreted into the extracellular space, but the secretory process and regulatory mechanism are largely unknown. Here, using a time-lapse imaging system, we visualized the intracellular transport and secretory process of calu-1/2-EGFP after their translocation into the ER lumen. Interestingly, we observed that an abundance of calu-1/2-EGFP accumulated in cellular processes before being released into the extracellular space, while only part of calu-1/2-EGFP proteins were secreted directly after attaching to the cell periphery. Moreover, we found the secretion of calu-1/2-EGFP required microtubule integrity, and that calu-1/2-EGFP-containing vesicles were transported by the motor proteins Kif5b and cytoplasmic dynein. Finally, we determined the export signal of calu-1/2-EGFP (amino acid positions 20–46) and provided evidence that the asparagine at site 131 was indispensable for calu-1/2-EGFP stabilization. Taken together, we provide a detailed picture of the intracellular transport of calu-1/2-EGFP, which facilitates our understanding of the secretory mechanism of calu-1/2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.