The aim of this experimental study was to investigate the effects of caffeic acid phenethyl ester (CAPE), an antioxidant agent, on cisplatin-induced hepatotoxicity through adenosine deaminase (AD), xanthine oxidase (XO), catalase (CAT), superoxide dismutase (SOD) activities and malondialdehyde (MDA) and nitric oxide (NO) levels in liver tissue of rats. Wistar albino rats were divided into three groups: control group (n = 6), cisplatin group (n = 9) and CAPE + cisplatin group (n = 8). All the chemicals used were applied intraperitoneally. Spectrophotometric methods were used to determine the activities of the above-mentioned enzymes in the liver tissue. NO level and XO activity were found to be increased in the cisplatin group compared to the control group. NO level was found to be decreased in the cisplatin + CAPE group in comparison with the cisplatin group. There was no significant change in the activity of XO between the cisplatin and cisplatin + CAPE groups. The activity of SOD was lower in the cisplatin group than both the control and cisplatin + CAPE groups. There was no significant change in the activity of CAT between the control and cisplatin groups. CAT activity was increased in the cisplatin + CAPE group compared to the cisplatin group. The AD activity and MDA level remained unchanged in all groups. The results obtained suggested that CAPE significantly attenuated the hepatotoxicity as an indirect target of cisplatin in an animal model of cisplatin-induced nephrotoxicity.
There is a great evidence that reactive oxygen species (ROS) play an important role in the pathophysiology of ischemia-reperfusion (I/R) injury in skeletal muscle. Caffeic acid phenethyl ester (CAPE) is a component of honeybee propolis. It has antioxidant, anti-inflammatory and free radical scavenger properties. The aim of this study is to determine the protective effects of CAPE against I/R injury in respect of protein oxidation, neutrophil in filtration, and the activities of xanthine oxidase (XO) and adenosine deaminase (AD) on an in vivo model of skeletal muscle I/R injury. Rats were divided into three equal groups each consisting of six rats: Sham operation, I/R, and I/R plus CAPE (I/R+CAPE) groups. CAPE was administered intraperitoneally 60 min before the beginning of the reperfusion. At the end of experimental procedure, blood and gastrocnemius muscle tissues were used for biochemical analyses. Tissue protein carbonyl (PC) levels and the activities of XO, myeloperoxidase (MPO) and AD in I/R group were significantly higher than that of control (p < 0.01, p < 0.05, p < 0.01, p < 0.005, respectively). Administration of CAPE significantly decreased tissue PC levels, MPO and XO activities in skeletal muscle compared to I/R group (p < 0.01, p < 0.05, p < 0.05, respectively). In addition, plasma creatine phosphokinase (CPK), XO and AD activities were decreased in I/R+CAPE group compared to I/R group (p < 0.05, p < 0.05, p < 0.001). The results of this study revealed that free radical attacks may play an important role in the pathogenesis of skeletal muscle I/R injury. Also, the potent free radical scavenger compound, CAPE, may have protective potential in this process. Therefore, it can be speculated that CAPE or other antioxidant agents may be useful in the treatment of I/R injury as well as diffused traumatic injury of skeletal muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.