Abstract. Spatio-temporally variable information on total vegetation cover is highly relevant to water quality and land management in river catchments adjacent to the Great Barrier Reef, Australia. A time series of the global Moderate Resolution Imaging Spectroradiometer (MODIS) Fraction of Photosynthetically Active Radiation (FPAR; and its underlying biome classification (MOD12Q1) were compared to national land cover and regional, remotely sensed products in the dry-tropical Burdekin River. The MOD12Q1 showed reasonable agreement with a classification of major vegetation groups for 94% of the study area. We then compared dry-seasonal, quality controlled MODIS FPAR observations to (i) Landsat-based woody foliage projective cover (wFPC) (2004) and (ii) MODIS bare ground index (BGI) observations (2001)(2002)(2003). Statistical analysis of the MODIS FPAR revealed a significant sensitivity to Landsat wFPC-based Vegetation Structural Categories (VSC) and VSC-specific temporal variability over the 2004 dry season. The MODIS FPAR relation to 20 coinciding MODIS BGI dry-seasonal observations was significant (ρ < 0.001) for homogeneous areas of low wFPC. Our results show that the global MODIS FPAR can be used to identify VSC, represent VSC-specific variability of PAR absorption, and indicate that the amount, structure, and optical properties of green and non-green vegetation components contribute to the MODIS FPAR signal.
Increasing population growth and growing ecological problems in urban areas require advanced remote sensing technology for the acquisition of detailed and accurate land-use information for urban management and planning issues. Surface consumption of 120 ha per day (2003) for traffic and settlement areas in Germany is far away from the 30 ha per day of the sustainability-strategy intended for the year 2020 by the Federal Environmental Ministry. With regard to the 50ies, imperviousness and sealing almost doubled. The presented study is embedded in a project in North RhineWestphalia (NRW), the most densely populated federal state in Germany. During the last decades, industrial transformation processes as well as strong economic and socio-structural changes have taken place, making NRW most suitable as an exemplary region to study and visualize dynamic developments in Europe. The examined time period of this work includes intense urban development and expansion in the suburban regions. LANDSAT data of three time slices (1975, 1984 & 2001) build the backbone to detect the changes taken place. Applying a multisensoral approach with improved spatial and even spectral resolution the focus is on the urban development of certain "hot spots" in NRW. CORONA, IKONOS as well as ASTER satellite data is used to allow a further characterization of urban landuse types and changes in more detail over the last four decades. Classical change detection methods as PCA are combined with classification of segmented urban land-use areas when evaluating the type of change.
ABSTRACT:This study demonstrates the potential applicability of high temporal frequency information on the biophysical condition of the vegetation from a time series of the global Moderate Resolution Imaging Spectroradiometer (MODIS) Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) from 2000 to 2006 (collection 4; 8-day composites in 1 km spatial resolution) to improve modelling of soil loss in a tropical, semi-arid catchment in Queensland. Combining the biophysical information from the MODIS FPAR with structural vegetation information from the Geoscience Laser Altimeter System on the Ice, Cloud, and land Elevation Satellite (ICESat) for six vegetation structural categories identified from a Landsat Thematic Mapper 5 (TM) and Enhanced Thematic Mapper 7 (ETM+) woody foliage projective cover product representing floristically and structurally homogeneous areas, dynamic vegetative cover factor (vCf) estimates were calculated. The dynamic vCf were determined in accordance with standard calculation methods used in erosion models worldwide. Time series of dynamic vCf were integrated into a regionally improved version of the Universal Soil Loss Equation (USLE) to predict daily soil losses for the study area. Resulting time series of daily soil loss predictions averaged over the study area coincided well with measures of total suspended solids (TSS) (mg/l) at a gauge at the outlet of the catchment for three wet seasons (R 2 of 0.96 for a TSS-event). By integrating the dynamic vCf into modified USLE, the strength of the dependence of daily soil loss predictions to the only other dynamic factor in the equation -daily rainfall erosivity -was reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.