The authors investigated the effect of vascular endothelial growth factor (VEGF) on hypoxic injury of cultured rat hippocampal neurons. Treatment with glutamate receptor antagonists prevented hypoxic neuron death. The same magnitude of protection was observed in cultures treated with VEGF, which also reduced excitotoxic neuron death induced directly by an exposure to -methyl-d-aspartate. Vascular endothelial growth factor did not alter the activation of the transcription factor nuclear factor-kappaB during hypoxia and protected cells in a PI-3-kinase-independent manner. Vascular endothelial growth factor failed to protect against staurosporine-induced, caspase-dependent apoptosis. These data suggest that VEGF-induced protection against hypoxic injury primarily involves the inhibition of excitotoxic processes.
BackgroundPrebiotics, probiotics and synbiotics can be used to modulate both the composition and activity of the gut microbiota and thereby potentially affecting host health beneficially. The aim of this study was to investigate the effects of eight synbiotic combinations on the composition and activity of human fecal microbiota using a four-stage semicontinuous model system of the human colon.Methods and FindingsCarbohydrates were selected by their ability to enhance growth of the probiotic bacteria Lactobacillus acidophilus NCFM (NCFM) and Bifidobacterium animalis subsp. lactis Bl-04 (Bl-04) under laboratory conditions. The most effective carbohydrates for each probiotic were further investigated, using the colonic model, for the ability to support growth of the probiotic bacteria, influence the composition of the microbiota and stimulate formation of short-chain fatty acids (SCFA).The following combinations were studied: NCFM with isomaltulose, cellobiose, raffinose and an oat β-glucan hydrolysate (OBGH) and Bl-04 with melibiose, xylobiose, raffinose and maltotriose. All carbohydrates showed capable of increasing levels of NCFM and Bl-04 during fermentations in the colonic model by 103–104 fold and 10–102 fold, respectively. Also the synbiotic combinations decreased the modified ratio of Bacteroidetes/Firmicutes (calculated using qPCR results for Bacteroides-Prevotella-Porphyromonas group, Clostridium perfringens cluster I, Clostridium coccoides - Eubacterium rectale group and Clostridial cluster XIV) as well as significantly increasing SCFA levels, especially acetic and butyric acid, by three to eight fold, as compared to the controls. The decreases in the modified ratio of Bacteroidetes/Firmicutes were found to be correlated to increases in acetic and butyric acid (p = 0.04 and p = 0.03, respectively).ConclusionsThe results of this study show that all synbiotic combinations investigated are able to shift the predominant bacteria and the production of SCFA of fecal microbiota in a model system of the human colon, thereby potentially being able to manipulate the microbiota in a way connected to human health.
Two thioredoxin h isoforms, HvTrxh1 and HvTrxh2, were identified in two and one spots, respectively, in a proteome analysis of barley (Hordeum vulgare) seeds based on 2D gel electrophoresis and MS. HvTrxh1 was observed in 2D gel patterns of endosperm, aleurone layer and embryo of mature barley seeds, and HvTrxh2 was present mainly in the embryo. During germination, HvTrxh2 decreased in abundance and HvTrxh1 decreased in the aleurone layer and endosperm but remained at high levels in the embryo. On the basis of MS identification of the two isoforms, expressed sequence tag sequences were identified, and cDNAs encoding HvTrxh1 and HvTrxh2 were cloned by RT-PCR. The sequences were 51% identical, but showed higer similarity to thioredoxin h isoforms from other cereals, e.g. rice Trxh (74% identical with HvTrxh1) and wheat TrxTa (90% identical with HvTrxh2). Recombinant HvTrxh1, HvTrxh2 and TrxTa were produced in Escherichia coli and purified using a three-step procedure. The activity of the purified recombinant thioredoxin h isoforms was demonstrated using insulin and barley a-amylase/subtilisin inhibitor as substrates. HvTrxh1 and HvTrxh2 were also efficiently reduced by Arabidopsis thaliana NADP-dependent thioredoxin reductase (NTR). The biochemical properties of HvTrxh2 and TrxTa were similar, whereas HvTrxh1 had higher insulin-reducing activity and was a better substrate for Arabidopsis NTR than HvTrxh2, with a K m of 13 lM compared with 44 lM for HvTrxh2. Thus, barley seeds contain two distinct thioredoxin h isoforms which differ in temporal and spatial distribution and kinetic properties, suggesting that they may have different physiological roles.
The human gastrointestinal tract can be positively modulated by dietary supplementation of probiotic bacteria in combination with prebiotic carbohydrates. Here differential transcriptomics and functional genomics were used to identify genes in Lactobacillus acidophilus NCFM involved in the uptake and catabolism of 11 potential prebiotic compounds consisting of α- and β- linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosphotransferase systems (PTS), galactoside pentose hexuronide (GPH) permease, and ATP-binding cassette (ABC) transporters. PTS systems were upregulated primarily by di- and tri-saccharides such as cellobiose, isomaltose, isomaltulose, panose and gentiobiose, while ABC transporters were upregulated by raffinose, Polydextrose, and stachyose. A single GPH transporter was induced by lactitol and galactooligosaccharides (GOS). The various transporters were associated with a number of glycoside hydrolases from families 1, 2, 4, 13, 32, 36, 42, and 65, involved in the catabolism of various α- and β-linked glucosides and galactosides. Further subfamily specialization was also observed for different PTS-associated GH1 6-phospho-β-glucosidases implicated in the catabolism of gentiobiose and cellobiose. These findings highlight the broad oligosaccharide metabolic repertoire of L. acidophilus NCFM and establish a platform for selection and screening of both probiotic bacteria and prebiotic compounds that may positively influence the gastrointestinal microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.