Asymptomatic carriage of HBoV is common in infants <1 year of age, and an HBoV-positive test result does not imply that HBoV is the cause of the illness.
Transmission characteristics of malaria were studied in Matola, a coastal suburb of Maputo, the capital City, in southern Mozambique, from November 1994 to April 1996. The local climate alternates between cool dry season (May-October) and hot rainy season (November-April) with mean annual rainfall 650-850 mm. Saltmarsh and freshwater pools provide mosquito breeding sites in Matola. Malaria prevalence reached approximately 60% among people living nearest to the main breeding sites of the vectors. Plasmodium falciparum caused 97% of malaria cases, others being P. malariae and P. ovale. Potential malaria vector mosquitoes (Diptera: Culicidae) collected at Matola during daytime indoor-resting (n = 1021) and on human bait at night (n = 5893) comprised 12% Anopheles coustani Laveran (93% biting outdoors), 46% An. funestus Giles (68% biting indoors) and 42% An. gambiae Giles sensu lato (60% biting outdoors). All 215 specimens of An. gambiae s.l. identified genetically were An. arabiensis Patton. Anopheles funestus populations remained stable throughout the year, whereas densities of the An. gambiae complex fluctuated considerably, with An. arabiensis peaking during the rainy season. No concomitant rise in malaria incidence was observed. Human landing indices of An. funestus and An. arabiensis averaged 1.8 and 3.8 per man-night, respectively. Overall Plasmodium sporozoite rates were 2.42+/-1.24% in 2181 An. funestus and 1.11+/-1.25% in 1689 An. arabiensis dissected and examined microscopically. Mean daily survival rates were 0.79 for both vector species. Estimated infective bites/person/year were 15 An. funestus and 12 An. arabiensis. Biting rates were greatest at 2100-24.00 hours for An. funestus (68% endophagic) and 21.00-03.00 hours for An. arabiensis (40% endophagic). The entomological inoculation rate (EIR) declined sharply over very short distances (50% per 90m) away from breeding-sites of the vectors. Consequently, P. falciparum prevalence among Matola residents was halved 350 m within the town. Implications for the protective effectiveness of a 'cordon sanitaire' by residual house-spraying and/or the use of insecticide-treated bednets are discussed.
The development of vaccines is presently receiving major attention in malaria research. As it is not possible to base malaria vaccines on the use of killed or attenuated organisms, the vaccines which are being developed are subunit vaccines in which the immunogens consist of defined parasite antigens or antigenic fragments. Since protective immunity to malaria involves both antibody-dependent and antibody-independent mechanisms, the immunogens in a subunit vaccine must have the capacity to induce relevant B- and T-cell responses in the majority of vaccinees. In turn, this requires good knowledge of these responses in humans who have acquired immunity through natural infection. In this paper we have summarized our recent work on the dissection into epitope-specific components of the human antibody response to the Plasmodium falciparum antigen Pf155/RESA, a recognized candidate for a vaccine against the asexual blood stages of this parasite. Epitope mapping of the antigen by means of short synthetic peptides led to the identification in several molecular regions of short amino acid sequences constituting linear and probably immunodominant B-cell epitopes. The antigenically most active region was located in the C-terminus of the molecule. This region, which consists of approximately 40 related, 4- or 8-amino acid long repeats, induced higher antibody concentrations in a larger number of malaria-immune donors than any of the other regions. A large fraction of these antibodies bound to short synthetic peptides representing the major repeat motifs of Pf155/RESA. Although these repeats are made up of closely related amino acid sequences, the antibody response to them was highly polyclonal, indicating the presence of several linear and probably also conformational epitopes which gave rise to a variety of cross-reacting as well as monospecific antibodies. Further analysis revealed that the levels of antibodies differing in specificity and/or avidity for different peptides varied independently of each other in individual donors. In an area (Liberia) where malaria transmission is holoendemic and perennial, these antibody profiles remained constant when individual donors were followed over several years. Since the C-terminal repeat region of Pf155/RESA is conserved in different P. falciparum strains, the results reflect differences in the genetic regulation of epitope-specific host responses rather than antigenic differences between infecting parasites. In donors living in an area with high but seasonal malaria transmission, antibody levels usually drop to lower levels when there is no transmission.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.