The ageing property of the asphalt binder is time-dependent. A time-dependent short term ageing property of 80/100 penetration grade bitumen and the possibility of waste engine oil rejuvenation for the highly aged asphalt binder performance were investigated. Four specimens of equal weight from the penetration grade-80/100 bitumen are collected. The first specimen was checked for quality requirements. The other three specimens were aged using rolling thin film oven for 85, 115, and 145 minutes to simulate the delay during hot mix asphalt production, hauling, and compaction. The highly aged bitumen was rejuvenated with 2%, 5%, and 10% Waste Engine Oil by weight. Results indicated that as the ageing time increased, penetration and ductility decreased, softening point, flash point, fire point, and mass loss increased. A conventional test showed that highly aged bitumen from the trial period was 145 minutes and 10% waste engine oil obtained the optimum dosage. Further, multiple stress creep recovery analyses indicated the rejuvenated binder is prone to pavement rutting above 70°C, and rejuvenation is effective for pavement temperature below 70°C. Hence, exposing the asphalt binder for temperature for a more extended period affects pavement performance.
Engineers have been using modified binders to improve the quality of flexible pavements. The use of waste material is one of the solutions taken in this direction. It is for this ground that the studies emphasis on the evaluation of waste engine oil as a modifier for asphalt binder as a pavement material. In the study uses four samples extracted from 80/100 penetration grade bitumen. From four sample first sample was checked for weather requirements of asphalt binder meet or not and the three were modified with different content of engine oil (3,6 and 9%). The behaviors of both unmodified and modified binder were checked for rheological properties. Dynamic shear rheometer (DSR) was used to determine high temperature performance grade (PG) and multiple stress creep recovery tests to determine rutting resistance properties of the binder. PG analysis indicates that both aged and un-aged 3% and 6% modified binder have similar higher PG grade with the unmodified one and 9% modified to have lower PG vale. Jnr3.2 value of modified asphalt binder is lower than unmodified binder indicating that modification had improved the rutting resistance and design traffic load (ESALS). The study shows that it is possible to use waste engine oil-modified binder as a pavement material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.