Major findings of the pilot study involving 21 critically ill patients during the week after admission to the critical care unit specialized for COVID-19 are presented. Fourteen patients have recovered, while seven passed away. There were no differences between them in respect to clinical or laboratory parameters monitored. However, protein adducts of the lipid peroxidation product 4-hydroxynonenal (HNE) were higher in the plasma of the deceased patients, while total antioxidant capacity was below the detection limit for the majority of sera samples in both groups. Moreover, levels of the HNE-protein adducts were constant in the plasma of the deceased patients, while in survivors, they have shown prominent and dynamic variations, suggesting that survivors had active oxidative stress response mechanisms reacting to COVID-19 aggression, which were not efficient in patients who died. Immunohistochemistry revealed the abundant presence of HNE-protein adducts in the lungs of deceased patients indicating that HNE is associated with the lethal outcome. It seems that HNE was spreading from the blood vessels more than being a consequence of pneumonia. Due to the limitations of the relatively small number of patients involved in this study, further research on HNE and antioxidants is needed. This might allow a better understanding of COVID-19 and options for utilizing antioxidants by personalized, integrative biomedicine approach to prevent the onset of HNE-mediated vitious circle of lipid peroxidation in patients with aggressive inflammatory diseases.
AimTo assess the diagnostic value of neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in lung cancer (LC). We compared the ratios between healthy participants and all LC patients, as well patients with different pathohistological LC subtypes.MethodsWe retrieved the data on neutrophil, lymphocyte, and platelet levels in 449 patients with different pathohistological LC subtypes (non-small cell LC, small-cell LC, atypical or metastatic LC, neuroendocrine, and sarcomatoid carcinoma) and 47 healthy controls. NLR and PLR were calculated by dividing the absolute number of neutrophils or platelets with the absolute number of lymphocytes.ResultsThere were significant differences in both NLR and PLR (P < 0.001) between all LC patients and the control group, but there were no differences between patients with different LC subtypes. Reciever operating characteristics analysis for NLR showed the optimal cut-off value of 2.71, with a sensitivity of 77.05% and specificity of 87.23%. The optimal cut-off value for PLR was 182.31, with a sensitivity of 51.09% and specificity of 91.49%.ConclusionThe results showed that the NLR and PLR may have added value in the early diagnosis of LC, but further research is needed to confirm these results.
Several studies suggested the association of COVID-19 with systemic oxidative stress, in particular with lipid peroxidation and vascular stress. Therefore, this study aimed to evaluate the antioxidant signaling in the plasma of eighty-eight patients upon admission to the Clinical Hospital Dubrava in Zagreb, of which twenty-two died within a week, while the other recovered. The differences between the deceased and the survivors were found, especially in the reduction of superoxide dismutases (SOD-1 and SOD-2) activity, which was accompanied by the alteration in glutathione-dependent system and the intensification of the thioredoxin-dependent system. Reduced levels of non-enzymatic antioxidants, especially tocopherol, were also observed, which correlated with enhanced lipid peroxidation (determined by 4-hydroxynonenal (4-HNE) and neuroprostane levels) and oxidative modifications of proteins assessed as 4-HNE-protein adducts and carbonyl groups. These findings confirm the onset of systemic oxidative stress in patients with severe SARS-CoV-2, especially those who died from COVID-19, as manifested by strongly reduced tocopherol level and SOD activity associated with lipid peroxidation. Therefore, we propose that preventive and/or supplementary use of antioxidants, especially of lipophilic nature, could be beneficial for the treatment of COVID-19 patients.
An oxidative degradation product of the polyunsaturated fatty acids, 4-hydroxynonenal (4-HNE), is of particular interest in cancer research due to its concentration-dependent pleiotropic activities affecting cellular antioxidants, metabolism, and growth control. Although an increase in oxidative stress and lipid peroxidation was already associated with prostate cancer progression a few decades ago, the knowledge of the involvement of 4-HNE in prostate cancer tumorigenesis is limited. This study investigated the appearance of 4-HNE-protein adducts in prostate cancer tissue by immunohistochemistry using a genuine 4-HNE monoclonal antibody. Plasma samples of the same patients and samples of the healthy controls were also analyzed for the presence of 4-HNE-protein adducts, followed by metabolic profiling using LC-ESI-QTOF-MS and GC-EI-Q-MS. Finally, the analysis of the metabolic pathways affected by 4-HNE was performed. The obtained results revealed the absence of 4-HNE-protein adducts in prostate carcinoma tissue but increased 4-HNE-protein levels in the plasma of these patients. Metabolomics revealed a positive association of different long-chain and medium-chain fatty acids with the presence of prostate cancer. Furthermore, while linoleic acid positively correlated with the levels of 4-HNE-protein adducts in the blood of healthy men, no correlation was obtained for cancer patients indicating altered lipid metabolism in this case. The metabolic pathway of unsaturated fatty acids biosynthesis emerged as significantly affected by 4-HNE. Overall, this is the first study linking 4-HNE adduction to plasma proteins with specific alterations in the plasma metabolome of prostate cancer patients. This study revealed that increased 4-HNE plasma protein adducts could modulate the unsaturated fatty acids biosynthesis pathway. It is yet to be determined if this is a direct result of 4-HNE or whether they are produced by the same underlying mechanisms. Further mechanistic studies are needed to grasp the biological significance of the observed changes in prostate cancer tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.