This account describes the historical development of the coupling of γ,δ-unsaturated Fischer carbene complexes and o-alkynylbenzaldehydes, which directly affords hydrophenanthrene ring systems in a process where each reactant contributes five carbons to the newly-formed bicyclo[4.4.0]decane ring system. The process has been termed net [5+5] cycloaddition. Use of the reaction to produce various medicinally important natural products and/or their parent ring systems is discussed.
Three-component coupling of Fischer carbene complexes, enyne aldehyde hydrazones, and electron-deficient alkynes leads to simple benzoate derivatives in a process involving the formation of an N-aminopyrrole derivative, Diels-Alder reaction, and nitrene extrusion. The products are readily converted into isoquinolones through reaction with primary amines. The reaction proceeds best with highly substituted and electron-rich pyrroles even though these are the sterically least favorable substrates, and this reactivity trend is supported by a computational study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.