This report describes the discovery of RAD140, a potent, orally bioavailable, nonsteroidal selective androgen receptor modulator (SARM). The characterization of RAD140 in several preclinical models of anabolic androgen action is also described.KEYWORDS Androgen, SARM, cachexia, oxadiazole, Herschberger assay, primate T he androgen receptor (AR) is a member of the steroid hormone nuclear receptor superfamily that includes estrogen, progestin, glucocorticoid and mineralocorticoid receptors. 1 The binding of the prototypical, endogeneously produced androgen testosterone (1) and the important active metabolite dihydrotestosterone (2) to AR initiates a remarkably diverse array of biological activities that can vary according to a subject's sex, age and hormonal status. The activity of AR is critical to normal human sexual development and function, but beyond this signature role, AR activation also has important effects on diverse targets such as bone, liver, muscle and the central nervous system. 2,3 The therapeutic potential of androgen signaling is well-appreciated in the medicinal chemistry community, and for quite some time, chemists have sought compounds that selectively stimulate muscle and bone growth while minimizing the proliferative and/or hypertrophic effects on sex tissues such as the prostate in males and clitoris in females. 4,5 Such compounds have been termed selective androgen receptor modulators or SARMs. In this regard, the prototypical and endogenous androgen, testosterone, is considered to be a logical benchmark comparator. Compound 3 is the GTx SARM S-22 and compound 4 is the BMS SARM 562929, both of which have been reported in the literature as being orally active compounds with selectivity for muscle over prostate relative to testosterone in various preclinical models. 6,7 The possibility of obtaining compounds having tissueselective activities that are different from that of the endogenous benchmark testosterone might derive from the fact that typical AR receptor activation, which is initiated by the binding of a molecule with affinity for the AR to the AR ligand binding domain, is then followed by a rather remarkable, coordinated series of interactions: These may include a change in receptor topology, dissociation of heat shock proteins, receptor dimerization, receptor phosphorylation, rapid-signaling events, translocation to the nucleus (AR), association with many different coregulatory proteins to form a transcriptional complex that results in the activation or suppression of RNA synthesis from AR-modulated genes, and finally receptor degradation. 8 Since each receptor-ligand complex topology is unique to that ligand structure, one can appreciate that the interaction of any particular ligand-receptor complex with coregulatory proteins is likely to be unique to that ligand as well. Furthermore, because the expression level of AR, the constellation and expression level of coregulatory proteins, and the patterns of post-transcriptional regulatory events differ in each type of androgen...
The selective esterification of starch nanoparticles was performed using as catalyst Candida antartica Lipase B (CAL-B) in its immobilized (Novozym 435) and free (SP-525) forms. The starch nanoparticles were made accessible for acylation reactions by formation of Aerosol-OT (AOT, bis(2-ethylhexyl)sodium sulfosuccinate) stabilized microemulsions. Starch nanoparticles in microemulsions were reacted with vinyl stearate, ε-caprolactone, and maleic anhydride at 40 °C for 48 h to give starch esters with degrees of substitution (DS) of 0.8, 0.6, and 0.4, respectively. Substitution occurred regioselectively at the C-6 position of the glucose repeat units. Infrared microspectroscopy (IRMS) revealed that AOT-coated starch nanoparticles diffuse into the outer 50 μm shell of catalyst beads. Thus, even though CAL-B is immobilized within a macroporous resin, CAL-B is sufficiently accessible to the starch nanoparticles. When free CAL-B was incorporated along with starch within AOT-coated reversed micelles, CAL-B was also active and catalyzed the acylation with vinyl stearate (24 h, 40 °C) to give DS = 0.5. After removal of surfactant from the modified starch nanoparticles, they were dispersed in DMSO or water and were shown to retain their nanodimensions.
Immobilized lipase B from Candida antarctica (Novozyme 435) catalyzed the regioselective formation of ester bonds between organosilicon carboxylic diacids and a C1-O-alkylated sugar under mild reaction conditions (i.e., low temperature, neutral pH, solventless). Specifically, the acid-functionalized organosilicones reacted with the primary hydroxyl group at the C6 position of alpha,beta-ethyl glucoside during the regioselective esterification. The pure organosilicon-sugar conjugates were prepared in a one-step reaction without protection-deprotection steps and without activation of the acid groups with the integrity of the siloxane bonds. [reaction: see text]
Immobilized Lipase B from Candida antartica (CAL-B, Novozyme 435) catalyzed terpolymerizations of bis(hydroxymethyl)butyric acid, BHB (AB2) and 1,8-octanediol (B2) with adipic acid (A2). The copolymerizations of these AB2, B2, and A2 monomers were conducted in bulk, at 80 °C, without activation of the acid groups. Carbon (13C) NMR studies using a series of model BHB derivatives showed that CAL-B was strictly selective for esterification of BHB hydroxyl groups while leaving the carboxylic acid unchanged. Thus, all polymerizations were conducted as if BHB were a B2 monomer and then formulating a 1 to 1 ratio of carboxylic acid to hydroxyl groups in the monomer feed. By varying the monomer feed ratio, copolyesters with 9−45 mol % BHB−adipate units were formed with M w values between 21 900 and 2300 g/mol. By this direct polymerization without protection−deprotection chemistry, a series of linear aliphatic copolyesters with controlled quantities of pendant free acid groups was prepared. Thermal and crystalline properties of the copolyesters were studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and wide-angle X-ray scattering (WAXS). Increasing the BHB content in the copolyesters resulted in melting temperature depressions that were well described by Baur's equation for random copolymers where BHB−adipate units are excluded from the crystal phase of the crystallizable 1,8-octanediol−adipate units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.